Assessment of Nontraditional Products in Development to Combat Bacterial Infections

Because the conventional antibiotics pipeline remains so thin, finding new approaches is critical

Navigate to:

Assessment of Nontraditional Products in Development to Combat Bacterial Infections
Antibiotics

© iStockphoto

This brief is no longer up-to-date. See the latest data here.

While antibiotic innovation—finding and designing new types of antibiotics and improving existing drugs—remains essential to combating antibiotic resistance, “outside-the-box” approaches to preventing and treating bacterial infections are also needed. Such nontraditional approaches encompass a variety of products, including:

  • Well-known medical interventions, such as vaccines and immunotherapies, that have been proved effective in treating other types of disease and may also hold promise for the prevention or treatment of systemic (throughout the body) bacterial infections.
  • Entirely new types of therapies that have never been approved for use in human medicine. For example, products that disarm harmful pathogens to neutralize their threat to patients, or products that replace harmful bacteria with “healthy” bacteria to alleviate disease.

Nontraditional products are unlikely to fully substitute or replace antibiotic use but could provide new treatment options for patients through combined use with antibiotics or as a means of preventing an infection from taking hold. Questions remain regarding how nontraditional products should be tested for safety and efficacy, and how they could be used appropriately in the clinical setting.

To shed light on the development of these types of products and evaluate public policies to spur innovation, The Pew Charitable Trusts assessed nontraditional products for the treatment of systemic bacterial infection in clinical testing. The list, which will be updated regularly, identifies each product and its manufacturer, type of approach, potential targets, and stage in the clinical development process. The list does not include products that are in development but not yet being tested in humans. (See the methodology below for the criteria used to select the nontraditional products.)

Findings

The current assessment of the pipeline shows that 30 nontraditional products are in clinical development. Unlike many antibiotics in development, most nontraditional products are active against a limited range of pathogens. As of June 2018:

  • Of the 30 nontraditional products in development, six were in Phase 1 clinical trials, 19 in Phase 2, and five in Phase 3. (See the glossary of terms for descriptions of each phase.)
  • Less than a third of the nontraditional products in development are vaccines, and almost a third are antibodies. The remaining 12 products include lysins, probiotics, and peptide immunomodulators.
  • Over half of the nontraditional products in development are for the treatment of Clostridium difficile (an organism associated with serious, sometimes life-threatening diarrhea) or Staphylococcus aureus (associated with skin and a variety of systemic infections). 
  • A third of the nontraditional products in development are being pursued by firms in the top 50 pharmaceutical companies by sales revenue. These firms are primarily developing vaccines or antibodies.

Harnessing the promise of nontraditional products requires focused attention from a broad range of stakeholders, including scientists, clinicians, funders, and regulators to support:

  • Targeted research and development to evaluate whether a given nontraditional approach is effective.
  • Demonstrated improvement over antibiotic treatment alone.
  • Establishment of regulatory guidelines for approval of innovative products.

Nontraditional products in development for the U.S. market

  • Antibody: Proteins naturally produced by the immune system to identify and help remove potentially harmful pathogens. Novel therapies may take advantage of the specific targeting capacities antibodies have to bind to bacteria and inactivate them in a variety of ways.
  • Virulence inhibitor: Molecules that work by disarming pathogens, preventing and neutralizing their harmful effects (such as bacterial toxins), or weakening bacterial defenses to help patients’ immune systems overcome infections.
  • Peptide immunomodulator: Part of most organisms’ innate immune response. They modulate the immune system to enhance its response to the infection.
  • Lysin: Derived from bacteriophages (viruses that infect bacteria) that target and break up bacterial cell wall architecture.
  • Probiotic: Live microorganisms that help maintain and restore populations of beneficial bacteria in the human gut. The administration of broad spectrum antibiotics often indiscriminately kills gut bacteria, increasing the possibility of side effects and colonization by harmful bacteria. Administering probiotics alongside antibiotics may help alleviate these risks. In addition, probiotics may help in the treatment of challenging infections such as C. difficile.
  • Vaccine: Agents that stimulate the body’s immune system to recognize and destroy pathogens, such as bacteria, protecting the patient from infection. Vaccines typically contain inactivated disease-causing pathogens or components that resemble them.

Methodology

An initial list of nontraditional products in clinical development was provided by Citeline Inc.’s Pharmaprojects pipeline drug intelligence service.

The pipeline includes nontraditional products intended to treat or prevent serious infections that act systemically but excludes locally acting drugs such as topical, ophthalmic, and inhaled products. It does not include new indications or different formulations of previously approved products, or products used to treat Helicobacter pylori, biothreat pathogens, or mycobacterial infections such as tuberculosis and Mycobacterium avium complex.

Also included in the pipeline are products targeting C. difficile infections, many of which act locally in the intestines. C. difficile is often the consequence of systemic antibiotic use, and, while these bacteria are not yet widely resistant to antibiotics, the Centers for Disease Control and Prevention considers this pathogen an urgent threat. Thousands of Americans contract the illness each year, and an estimated 15,000 die as a result.

Pew supplemented the data provided by Citeline with other public information—specifically, trials registered in clinicaltrials.gov, articles published in the scientific literature or trade press, and company communications. Pew also works with external experts who advise on selection criteria and accuracy of information. This pipeline focuses on drug candidates under development for the U.S. market.

This pipeline will be updated biannually, beginning in March 2017. To submit additions, updates, or comments, please contact [email protected].

Antibiotic Development
Antibiotic Development

Tracking the Pipeline of Antibiotics in Development

Quick View

This collection page was updated in December 2017 with new content. Drug-resistant bacteria, or superbugs, present a serious and worsening threat to human health. A majority of doctors have encountered patients with infections that do not respond to available treatments, and when new drugs come to market bacteria can quickly develop resistance. According to a report from the Centers for Disease Control and Prevention, 2 million Americans acquire serious infections caused by antibiotic-resistant bacteria each year, and at least 23,000 die as a result. A sustained and robust pipeline of new antibacterial drugs and novel therapies is critical to ensure that new interventions keep pace with these evolving pathogens.

Glass flasks
Glass flasks
Article

The World Is Running Out of Antibiotics

Analyses of global antibiotic pipeline show insufficient drugs in development to meet growing threat of resistance

Quick View
Article

Reinvigorating the pipeline of antibiotics in development is more critical today than ever, as increasingly hard-to-treat bacteria continue to emerge. As part of ongoing work to spur the creation of urgently needed new antibiotics, The Pew Charitable Trusts’ antibiotic resistance project and the World Health Organization (WHO) have both released new analyses of the pipeline of products in clinical development with the potential to treat or prevent serious drug-resistant bacterial infections. And the findings are grim. 

Pills illustration
Pills illustration

What Is Antibiotic Resistance—and How Can We Fight It?

Sign up for our four-week email series The Race Against Resistance.

Quick View

Antibiotic-resistant bacteria, also known as “superbugs,” are a major threat to modern medicine. But how does resistance work, and what can we do to slow the spread? Read personal stories, expert accounts, and more for the answers to those questions in our four-week email series: Slowing Superbugs.