6 Research Teams to Collaborate, Seek Cutting-Edge Discoveries

Pew Innovation Fund promotes scientific cross-pollination among biomedical program alumni

Innovation Fund

At their annual meeting, Pew’s biomedical scholars gather to connect and learn from one another. Pew’s new Innovation Fund encourages scientists from different disciplines to work together in pursuing new discoveries to benefit human health.

The Pew Charitable Trusts

Some of the most cutting-edge discoveries often occur when scientists from different backgrounds and perspectives combine their knowledge and expertise. The Pew Charitable Trusts has long encouraged collaboration among the researchers who participate in our biomedical science programs. Now, six partnerships forged by alumni of Pew’s programs will receive financial support to pursue scientific advances as the inaugural class of Innovation Fund investigators.

For over 30 years, Pew has supported more than 900 early career researchers in the United States and Latin America. The breadth of research among these scientists is unique, spanning bioengineering and neuroscience, immunology and developmental biology, and more.

The 2017 Innovation Fund awardees are building interdisciplinary research projects that combine unique areas of expertise in an effort to solve some of today’s most challenging questions in biomedical research and further drive innovation in the biomedical sciences. Their research bridges vastly different areas—from cancer biology and neuroscience to structural and developmental biology.

The 2017 Innovation Fund teams are bringing their expertise together to explore a variety of research areas, including:

How cancer cells spread

Gilad Barnea, Ph.D., and Ben Z. Stanger, M.D., Ph.D., hope to develop novel means to track cancer cells as they spread. Barnea, a neuroscientist who studies how the mammalian brain processes smell, has created a technology that maps cellular connections in the nervous system. Stanger, a developmental and cancer biologist, is keen to use the technology to track how tumors spread. The pair aims to expand the utility of this unique tracking tool to trace a cancer cell’s movement and contact with other cells—work that could help to better define how and when metastatic disease takes hold.

Intersections of neuroscience and immunology

Robert C. Froemke, Ph.D., and Dan R. Littman, M.D., Ph.D., will explore new topics at the interface between neuroscience and immunology, employing techniques from one system to investigate the other. Froemke is a neuroscientist who specializes in innovative approaches to understanding the impact of neural chemicals on animal behavior. Littman, an immunologist known for his expertise on T-cells and HIV, is interested in learning about how intestinal bacteria trigger autoimmune diseases. Together they will use novel tools to probe how the neuronal sensing of gut microbes and intestinal function can alter an animal’s behavior—work that could help map how information is relayed from the gut to the nervous system to promote recovery from an illness.

Proteins customized to study biological processes

Barbara L. Golden, Ph.D., and Andrej Luptak, Ph.D., both study RNA and through this collaboration they will combine Golden’s expertise in structural biology and catalysis with Luptak’s background in chemistry and bioengineering to develop a programmable RNA enzyme—or ribozyme—that can be used to build new customized proteins. The idea, born in Golden’s laboratory, will allow researchers to artificially incorporate specific markers and modify proteins for diverse biotechnological purposes (e.g., protein tracking and drug enhancement) and enhance the study of fundamental biological processes.

Bacteria and immune system responses

Immunologists Ivaylo I. Ivanov, Ph.D., and Pamela J. Bjorkman, Ph.D., employ vastly different approaches to investigate immune responses. Ivanov is interested in learning how the immune system responds to indigenous bacteria that occupy the gut. These bacteria play a crucial role in human health, producing essential vitamins, aiding in digestion, and preventing the growth of more harmful organisms. Bjorkman uses electron tomography—a microscopy technique for obtaining fine 3-D structures of cells—to study viral infection in tissues. While seated together at an annual Pew meeting, the two discussed ways to bring together their complementary expertise, which sparked the idea of performing structural characterizations of the interactions between noninvasive microbes and intestinal cells. Findings from this research will allow Bjorkman and Ivanov to learn how bacteria interact with the intestine to modulate immune responses, and identify mechanisms that help regulate normal bodily functions.

How viruses replicate and persist

Benjamin R. tenOever, Ph.D., and Felicia D. Goodrum, Ph.D., both 2008 alumni, have a common interest in viruses and is looking for ways to better understand how viruses cause infections. TenOever’s research is focused on using RNAs to control virus infections and develop novel therapeutic tools. Goodrum is dedicated to understanding how the herpesvirus can stay in the host to cause lifelong latent infection. This grant allows them to combine efforts in developing a system to study human cytomegalovirus (HCMV)—a form of herpesvirus—in cell types important to viral persistence. Goodrum and tenOever will devise a system to better manipulate the virus to tease out the function of specific viral genes. Their findings are poised to advance understanding of how viruses lie dormant to cause persistent infections and may ultimately result in new ways of controlling virus replication and developing an effective HCMV vaccine.

3-D views of cell pathways

William I. Weis, Ph.D., and Georgios Skiniotis, Ph.D., bring a unique set of skills to study Wnt signaling—a pathway implicated in cellular development and cancer. Weis’ lab is immersed in Wnt research and uses biochemistry and biophysics-based tools to study the structure of Wnt signaling components, while the Skiniotis lab specializes in cryo-electron microscopy—a microscopy technique used to observe samples at a very low temperature—to dissect the structure of proteins. Together, Weis and Skiniotis will perform studies to obtain a 3-D structure of a major Wnt complex where various pathway components come together to form an organized scaffold. This is of particular interest because this complex is a major hub of Wnt activity, and understanding its assembly could lead to insights on how the pathway is regulated.

Kara Coleman directs The Pew Charitable Trusts’ biomedical programs, including the biomedical scholars, Pew-Stewart Scholars for Cancer Research, and Latin American fellows programs.

Spotlight on Mental Health

Pew Biomedical Scholars
Pew Biomedical Scholars
Project

Pew Biomedical Scholars

Quick View
Project

Pew has a decades-long commitment to support groundbreaking research by promising early-career biomedical scientists in the United States and Latin America. Our multiyear grants encourage informed risk-taking and collaboration among researchers.

Stewart Scholars
Stewart Scholars
Project

Pew-Stewart Scholars for Cancer Research

Quick View
Project

The Pew-Stewart Scholars Program for Cancer Research is a national initiative designed to support promising early career scientists whose research will accelerate discovery and advance progress to a cure for cancer. The program—funded by The Alexander and Margaret Stewart Trust and administered by Pew—will support five investigators each year.

Composite image of modern city network communication concept

Learn the Basics of Broadband from Our Limited Series

Sign up for our four-week email course on Broadband Basics

Quick View

How does broadband internet reach our homes, phones, and tablets? What kind of infrastructure connects us all together? What are the major barriers to broadband access for American communities?

Pills illustration
Pills illustration

What Is Antibiotic Resistance—and How Can We Fight It?

Sign up for our four-week email series The Race Against Resistance.

Quick View

Antibiotic-resistant bacteria, also known as “superbugs,” are a major threat to modern medicine. But how does resistance work, and what can we do to slow the spread? Read personal stories, expert accounts, and more for the answers to those questions in our four-week email series: Slowing Superbugs.

Explore Pew’s new and improved
Fiscal 50 interactive

Your state's stats are more accessible than ever with our new and improved Fiscal 50 interactive:

  • Maps, trends, and customizable charts
  • 50-state rankings
  • Analysis of what it all means
  • Shareable graphics and downloadable data
  • Proven fiscal policy strategies

Explore

Welcome to the new Fiscal 50

Key changes include:

  • State pages that help you keep track of trends in your home state and provide national and regional context.
  • Interactive indicator pages with highly customizable and shareable data visualizations.
  • A Budget Threads feature that offers Pew’s read on the latest state fiscal news.

Learn more about the new and improved Fiscal 50.