Edwin L. Ferguson, Ph.D.


Edwin L. Ferguson, Ph.D.
Department of Molecular Genetics and Cell Biology
University of Chicago
920 East 58th Street
City, State, ZIP
Chicago, IL 60637
(773) 702-8943
[email protected]
Research field
Award year


The lab approaches questions of pattern formation and cell fate specification in the fruit fly Drosophila melanogaster. Our current interests are the mechanisms underlying the patterning of the embryonic dorsal-ventral (D/V) axis and the asymmetric self-renewal divisions of adult stem cells. The original focus of the lab was on the role of the Bone Morphogenetic Protein family member Decapentaplegic (Dpp) in patterning the D/V axis. In the past, we demonstrated that the system that patterns the embryonic D/V axis is conserved between arthropods and chordates, identified the mechanism by which the Spemann organizer patterns the Xenopus body axis, and characterized essential and modulatory components of the Dpp signal transduction pathway. Recently, we showed that, although Dpp is broadly transcribed dorsally, receptor-bound Dpp is only observed in a sharp stripe comprising the dorsal-most cells. We have also begun to investigate processes underlying maintenance of the germ line stem cells (GSCs) in the adult ovary. Like most adult stem cells, the GSCs are present in an environmental niche, which provides signals necessary for their maintenance. Dpp is a niche signal required for GSC maintenance. We hypothesize that interactions between the GSC and the surrounding niche cells create an intrinsic polarity in the GSC. This polarity both controls the plane of GSC division and elevates responsiveness to Dpp within the GSC. These two characteristics ensure a robust pattern of asymmetric, self-renewal divisions.

Search Pew Scholars