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SUMMARY 
 

I present an update in the analysis in SCRS 2001/103, which used a Bayesian computational 
approach to obtain empirically based weightings for different stock-recruit functions that 
were fitted to the same data.  This approach offers a methodologically rigorous basis for 
computing credibilities or weights (i.e., Bayesian posterior probabilities) for different 
hypotheses.  Importance sampling was presented as a methodology to compute these 
probabilities. The approach was illustrated using stock-recruit data for western Atlantic 
bluefin tuna.  This paper also considered alternative hypotheses on (a) regime shifts affecting 
future recruitment and (b) the mathematical form of the stock-recruit function.  The updated 
analysis uses stock-recruit data obtained from ICCAT's 2010 stock assessment of western 
Atlantic bluefin tuna.  I present Bayes factors for the alternative hypotheses which reflect the 
ratio of Bayes' probability of the data for a particular hypothesis to that for some reference 
hypothesis and identified improved formulations of prior probabilities for estimated 
parameters that removed the influence of the priors on the values obtained for Bayes factors.  
The sensitivity of Bayes factors to numerous different statistical assumptions was evaluated, 
including settings for autocorrelation in stock-recruit deviates, different priors, differences in 
variance in recruitment deviates between regimes and the data to analyze. When applied to 
stock-recruit data from 1970 to 2006 and presuming a regime shift in 1977, Bayes factors 
were 4.8:1, favoring the Beverton-Holt no regime-shift model (i.e., the probability of the data 
was 4.8 times higher for the Beverton-Holt model compared to the two-line regime shift 
model).  When different input settings were applied, the values obtained for Bayes factors for 
the two hypotheses ranged widely.  They ranged, from about 1:2 against to 67:1 in favour of 
the Beverton-Holt model.  It is noted that the stock-recruit data obtained from ICCAT's 
assessments remain possibly biased due to migrations of the much larger eastern Atlantic 
population into the western Atlantic.  It is thus recommended that further efforts be devoted to 
improving understanding of western Atlantic bluefin tuna recruitment using estimates of 
recruits and SSB that are not contaminated by eastern stock migrations.    
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INTRODUCTION 
 

It is common in stock assessment for results to vary with input assumptions or hypotheses 
about the structural formulation of the stock assessment model considered.  This may occur when 
different assumptions are made about recruitment to the exploited population, for example, about the 
form of the stock-recruit relationship, and there is uncertainty over which one is correct.  This is often 
troublesome because different predictions about the consequences of alternative management actions 
can result from applying such different hypotheses in a stock assessment.   

 
Traditionally, assessment scientists choose the most believable set of assumptions as a base 

case scenario, and then run models with other assumptions as sensitivity analyses.  Decision-makers, 
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when presented with a base case, and sensitivity analyses, tend to consider only the base case in 
choosing management policies.  In the case when two or more hypotheses are considered believable, 
assessment scientists may present decision-makers with results for different sets of assumptions 
without choosing a preferred model.  Managers are then presented with a variety of results in which 
the best action depends upon which state of nature is assumed to be true.  Without any formal 
scientific guidance about how to weight the different hypotheses or assumptions, scientific 
considerations about their plausibility are often ignored in the decision making process.   

 
This appears to have been the case in the stock assessment of western Atlantic bluefin tuna 

where some alternative stock recruitment relationships were hypothesized in the 1990s and two of 
these have since been applied in stock projections (ICCAT, 1999).  ICCAT scientists have in their 
stock assessment reports indicated that the two alternative hypotheses on recruitment are equally 
plausible and that there’s been no scientific basis with which to evaluate the credibility of the two 
hypotheses (ICCAT 2002, 2008, 2010).  Stock rebuilding measures that have been adopted for the 
western Atlantic bluefin tuna stock have been based primarily on projection results from only one of 
the two hypotheses, despite scientists’ assertion that both hypotheses have remained equally plausible.  
In contrast, McAllister et al. (2000a, b) suggested a Bayesian approach dealing with the uncertainty in 
these alternative recruitment hypotheses within the context of the provision of fisheries management 
advice.  This paper takes up this issue by extending the approach and analysis of McAllister et al. 
(2000a, b). 

 
Butterworth et al. (1996) addressed this problem in stock assessment where different models 

suggested different optimal policies and emphasized the importance of developing a scientific basis to 
weight the different models. They suggested a number of systematic approaches to constructing 
weightings for alternative hypotheses on model structure.  Raftery and Richardson (1996), McAllister 
et al. (1999) and McAllister and Kirchner (2002) have suggested some Bayesian statistical approaches 
to constructing these weightings.  McAllister et al. (2000a) explored one of these and presented 
Bayesian decision analysis as a formal approach to provide empirically based weightings for 
conflicting stock assessment results and provide scientific guidance to decision makers when they are 
faced with such conflicting results. The weightings come in the form of posterior probabilities which 
reflect the probability of a given model or hypothesis given the available data.  McAllister et al. 
(2000a) proposed a statistical methodology to compute such probabilities for alternative models: the 
application of the sampling importance resampling (SIR) algorithm to the available data.  This 
approach is amenable to be used in conjunction with existing ICCAT stock assessment methods 
because it can be used in concert with ADAPT VPA methods, catch-age methods, and age-structured 
and non-age-structured surplus production modeling.  While it is useful to communicate about the 
credibility of a hypothesis by referring to posterior probabilities, these are often difficult to interpret 
since the probabilities by definition must sum to one and the probability values tend to get spread 
more thinly as the number of discrete alternative hypotheses increases.  

 
In this paper I make use of Bayesian posterior probabilities and also Bayes factors for 

structurally different models (Kass and Raftery 1995).  Bayes factors for alternative hypotheses reflect 
the ratio of the probability of the data given one particular model to the probability of the same data 
for a second model.  They do not require the formulation and application of prior probabilities for 
different models, are directly proportional to posterior probabilities when the prior probabilities for 
the different hypotheses are equal, and based on recent experience (e.g., King et al. 2011) are easier to 
interpret than probability values.   

 
McAllister et al. (2000a, b) examined two sets of hypotheses about western Atlantic bluefin 

tuna recruitment: whether the functional form of the stock-recruit relationship is Beverton-Holt or “2-
line”, and whether there was or was not a regime shift (Hare and Francis 1995) that changed the 
stock-recruit relationship.  This paper extends the data analysis to include western Atlantic bluefin 
tuna stock recruit data from ICCAT’s 2010 assessment of Atlantic bluefin tuna (ICCAT 2010) and the 
precise set of statistical assumptions applied in the 2010 assessment, for example, regarding 
autocorrelation in deviates from the stock-recruit functions considered.  It also identifies prior 
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probability distributions for stock-recruit model parameters that have negligible influence on Bayes 
factors for the different stock-recruit models and evaluates the sensitivity of Bayes factors to applying 
different years for the year of the regime shift, the final year of data to include and different 
assumptions about variance and autocorrelation in stock-recruit function deviates. 

 
 

Methods 
 
For descriptions of the general decision analytic approach and statistical protocols to dealing 

with structurally different stock assessment and stock-recruit models and computing marginal 
posterior probabilities for these using importance sampling see McAllister et al. (2000a).  I outline 
below the statistical formulations of the stock-recruit models applied in McAllister et al. (2000b). 

 
One quantity summarizing the weight of evidence in support of structurally different models 

is the marginal posterior probability for each model.  This is given by:   
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where p(mj) is the prior probability for model j, the relative plausibility for model j prior to evaluating 
such data, and p(j) is the prior probability density function of parameter vector j under model j and 

)|data( jP   is the probability density of the data obtained given the set of parameter values j under 

model j (in Bayes theorem, often referred to as likelihood function of the data).  The value p(j) 
represents the probability for a given set of values for the parameters in model j prior to obtaining a 
set of data that can further our ability to discriminate among alternative parameter values. In absence 
of a consensus on which prior probability distribution to apply, a non-informative prior probability 
distribution may be applied as the base case prior. Such priors should allow the data to speak for 
themselves.  For example, for discrete alternative hypotheses I would give each hypotheses the same 
prior probability:  p(mj) = 1/Nm where Nm is the number of alternative hypotheses or models 
considered. 
 

This paper considers the same stock-recruit data for western Atlantic bluefin tuna from 
ICCAT’s 2010 assessment.  I’ve used the 2010 stock-recruit data for 1970-2008 (source Laurie Kell, 
ICCAT Secretariat, Madrid).  These data together with the data applied in McAllister et al. (2000b) 
are shown in Table 1.  A third dataset (Porch et al. 1960) for 1960-1998 was also considered in a 
sensitivity analysis since it extends further back when SSB and recruitment were higher.  For most of 
the analyses, I have not included recruitment data after 2006 due to the decay in reliability of 
recruitment estimates in the latest recruits obtained from a VPA.  However, since the 2010 assessment 
included the 2006 stock-recruit data to characterize stock-recruit functions, the reference case results 
in this paper include the 2006 data point. I’ve focused on the two alternative hypotheses on functional 
form of the stock-recruit function that have been considered in western Atlantic bluefin tuna stock 
assessments since 1997: (1) the Beverton-Holt model without a regime shift in the time series and (2) 
a 2-line model or hockey stock stock-recruit function where there has been a shift in the 
environmental regime affecting recruitment in the 1970s.  The same steps for computing probabilities 
for structurally different models as outlined in McAllister et al. (2000a, b) are outlined below for the 
extended application to western Atlantic bluefin tuna. 
 
Step 1:  Identify alternative functional forms of the stock-recruit (SR) relationship 
 

In the 1998 and subsequent assessments of western Atlantic bluefin tuna, plots and analyses 
of stock-recruit data and the fitted stock-recruit functions indicated that the empirical deviations from 
the stock-recruit function were autocorrelated (e.g., ICCAT 1999; ICCAT 2010).  Thus, S-R deviates 
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in projections have been modeled in these assessments to be autocorrelated with a 1-year time lag.  As 
in McAllister et al. (2000b), I considered auto-correlation in S-R deviates and time-dependency in the 
magnitude of the variance for the deviates from the hypothesized stock-recruit relationship.   
 
Beverton-Holt (BH) Stock-Recruit Model (after Francis 1992): 
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where:  

1
ˆ
yR , is the predicted number of recruits of age 1 in year y + 1.   

Sy is the spawner biomass in year y.  
 
 =  (1-h) / (4 h) 
 =  (5 h – 1) / (4 h B0)  
 
 is spawner biomass per recruit (fixed at 0.528 tons based on life history parameters for the western 
stock in ICCAT (2010)), h is steepness, the proportion of recruitment at virgin stock size, B0, that 
results when S = 0.2 B0.    

2
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  is the first order autocorrelation coefficient of y  where y  is normally distributed with mean 0 

and a SD of R.  In some of the analyses, was set at the value applied in the 2010 assessment, which 
applied 0.52 in both the Beverton-Holt and 2 line models.  Xy is a normal random variable with mean 
0 and SD = R.  Further below I describe how the parameters for this stock-recruit model and the 
other models were estimated. 
 
2 Line (2L) Stock-Recruit Model (ICCAT 1999)  
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where  

R  is the median recruitment when Sy is greater than the inflection point in the 2 line stock-recruit 
function, Sinf, 

 inf/ SR   

y is as described for the Beverton-Holt Stock-recruit function (Equation 3). 
 
Sinf was determined according to the protocol in the 2010 assessment.  This was to take the average of 
the six lowest values for Sy in the time series, the values from 1990-1995, i.e., 12,640 tons. 
 
Step 2:  Formulate a plausible hypothesis for there to have been a regime shift (RS) that altered 
considerably the form of the stock recruit function.  
 
I considered the year, 1977 as the year in which the regime shift occurred because 1977 was the first 
year in the time series in which the estimated value for recruitment dropped below the long-term 
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average, i.e., between 1976 and 1977 recruitment went from 1.17 to 0.97 of the long term average 
value between 1970 and 2010.   
 
Step 3:  Identify the alternative stock-recruit models.   
 
As mentioned above, I focus mainly on the two alternative hypotheses on the structural form of the 
stock-recruit relationship for western bluefin tuna that have been considered in ICCAT’s assessment 
of western Atlantic bluefin tuna:  (i)  Beverton-Holt and no regime shift; (2) 2 line and no regime 
shift. In the absence of any scientific arguments about the relative credibility of each structural 
alternative, the prior probabilities for each of the two alternative models, p(mj) was set at 0.5.    
 
Step 4:  Identify parameters to be estimated in the alternative stock-recruit models identified in steps 
1-3.     
 
Hypothesis 1: Beverton-Holt, no regime shift:  The estimated parameters were  
 

B0 over the period 1970 and onwards,  
h,  
R for y before and after the year of the regime shift (YS) and     
y  the annual recruitment deviates.   
 

Hypothesis 2: 2 line, regime shift:  The estimated parameters were  
 

R <YS,  

R YS,  
R,1 for y before YS,  
R,2 for y after and including YS, and  
y the annual recruitment deviates.   

 
For the year of the regime shift (YS) onwards, Sinf>YS is assumed to be the average observed spawner 
biomass in years 1989-1993 (ICCAT 2010).  The same slope, , is assumed below the inflection point 

for both regimes.  Thus, for years before YS, /inf YSYS RS    and YSYS SR  inf/ . 

 
Step 5:  Define prior probability density (pdfs) functions for the parameters to be estimated in each of 
the alternative models.  
 
Relatively non-informative priors were identified for each estimated parameter.  The priors were 
chosen such that they were expected to have the lowest possible effect on the Bayes factors for 
different models and to allow the data to speak for themselves as much as possible.  These are 
somewhat different from the priors applied in McAllister et al. (2000b) and the sensitivity of results to 
the application of different priors is evaluated further below. 
 
The reference case priors for the two alternative models were as follows: 
 
B-H, no RS 
 
B0 ~ Uniform(log(10,000t), log(5,000,000t)) 
h~Uniform(0.21, 0.99) 
ln(R) ~ Uniform(ln(0.1), ln(1)) 
 
2-L RS 
 
ln(R,b) ~ Uniform(ln(0.1), ln(1)), b = 1, 2. 
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R  ~ Uniform(log(10,000), log(5,000,000)) 
 
where b signifies the regime. 
 
Step 6: Define the probability model of the data.  A 1-year lag auto-regressive stock-recruit function 
implies that each observed value for recruitment, Ry, is lognormally distributed about the value for 

recruitment, , predicted by the product of the recruitment given by the deterministic stock 

recruit model, j, in year y and the one-year-lag lognormal autoregressive term: 
yjR ,'ˆ
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Note that the annual deviate, y-1, that is applied to age 1 recruits, Ry, is referenced to the spawner 
biomass that produced that recruitment in the previous year (Sy-1).  Thus, for a one year lagged 
autoregressive process, the deviate y-1 is modeled to be correlated to the deviate, y-2. 
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For the first year in the time series with an age 1 recruitment observation, e.g., 1971, the value for y-2 
(i.e., 1969) was fixed at 0.  y-2 for recruitment “observations” in years from 1972 onwards was given 
by: 
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The likelihood function of the set of recruitment observations, R , was formulated as follows: 
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where yi and yf are the initial and final years of the stock-recruit data time series. 
 
 
Step 7:  Carry out importance sampling.   
 
See McAllister et al. (2000b) and McAllister and Ianelli (1997) for details.  This is done to estimate 
marginal posterior probabilities for quantities of interest when the model of interest contains several 
estimated parameters.  Draws are taken from a pre-specified density function called the importance 
function, which is constructed to be as similar as possible to the posterior density function of interest.  
The importance function applied for each estimation was the joint prior probability density function 
(pdf). Up to about 2,000,000 draws were taken from the importance function to obtain highly precise 
results (less than 10 minutes of computing time using Visual Basic 6.0 programming language and a 
2.2 gigahertz notebook PC). A useful diagnostic to test whether enough importance sampling has been 
done to compute Bayes factor for each model is to monitor the coefficient of variation in the average 
importance weight: 
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where  is the number of draws taken for model j and   jn
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where  kjh ,  is the value of the importance function (McAllister et al. 2000b) evaluated at the 

values for the parameters in parameter vector kj,  for model j. 

 
This provides an approximation of the expected coefficient of variation (CV) in the marginal posterior 
probabilities computed for each alternative model.  I applied, as a rule of thumb, the following 
stopping rule for importance sampling: the CV in the average importance weight for a given model 
should be less than 0.05 before stopping the importance sampling. 
 
Step 8:  Compute Bayes factor for each alternative model representing each joint hypothesis was 
given by (derived from McAllister et al. 2000a): 
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where mj is a fully specified stock-recruit model including the assumptions about variance, 
autocorrelation, the presence of a regime shift and the value for the lag 1 autocorrelation term, mref  is 
a model to which mj is being compared, and nj and nref are the number of draws taken from the 
importance density function used in importance sampling for model j and the reference model, 
respectively.   
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Step 9.  Evaluate the sensitivity of results to different statistical assumptions.  While it is common for 
a fixed pair of alternative models to be compared, it is common for there to be numerous somewhat 
arbitrary features to the model that could potentially influence the weightings obtained.  I have made 
several comparisons between models with different assumptions to evaluate the robustness of results 
to the making of different statistical assumptions within the stock-recruit models compared.  These are 
detailed in Table 2.  
 
Reference case model settings 
 

A chief aim of the analysis is to illustrate how to evaluate the credibility of the two alternative 
stock-recruit functions given the data used in ICCAT stock assessments (ICCAT 2010).  The stock-
recruit data included the number of age 1 recruits and spawner biomass from 1970-2006.  The 
presumed year for the regime shift was set to the one considered in the latest stock assessment (i.e., 
the 1976 cohort) (ICCAT 2010).  Autocorrelation in lag 1 autoregressive deviates from both stock 
recruit functions was applied with  set at 0.52 for both models as in ICCAT (2010).  For the regime 
shift model, the variance in stock-recruit function deviates was assumed to be different between the 
two regimes.  The priors for the location parameters for average unfished recruitment, i.e., Rbar in the 
2 line model, and R0 in the Beverton-Holt model, were made uniform on the natural logarithm of 
values for these parameters.  This was to make the priors as similar as possible between the two 
models.  The prior for R was made uniform on the natural logarithm of R, with the range of 
plausible values between 0.1 and 1, so that when a second R parameter was estimated for the 2nd 
regime, the effect of adding one additional parameter on Bayes factors for the two models was 
minimized, except in so far as it permitted a better fit to the data.   
 
Evaluation of the sensitivity of Bayes factors to different model settings 
 

The autocorrelation coefficient,  computed at lag 1 for the stock-recruit deviates from the fit 
of the B-H model to the 1970-2006 data was 0.17.  This was not significantly different from zero.  In 
contrast the value of 0.52 was applied in ICCAT (2010).  I thus evaluated the credibility of the B-H 
with the autocorrelation coefficient set at 0 and compared this model with the 2-L model with  also 
set to zero, and a few additional variants.  
 

It is of interest to compare results obtained in the previous analyses (McAllister et al. 2000a; 
McAllister et al. 2000b) using S-R data for years included in those analyses.  I’ve thus included two 
sets of comparisons.  One uses the S–R up to 1993 from the 2010 stock assessment.  The other uses 
the stock-recruit data up to 1993 that were used in McAllister et al. (2000b).   
 

It is of interest to evaluate the effects of how successive data points impact the computation of 
Bayes factors.  The effects of excluding the very large cohort in 2003, excluding 2006, and including 
the 2007 and 2008 datapoints were thus evaluated.   
 

Other stock-recruit datasets have been formulated for western Atlantic bluefin tuna using 
catch-age methods (Porch et al. 2001; Taylor et al. 2011).  Since a stock recruit-function was not 
included in Porch et al. (2001) catch-age estimation, the estimates of recruitment and spawning stock 
biomass are not influenced by a pre-existing stock-recruit function as they may be in Taylor et al. 
(2011).  The alternative stock-recruit dataset for the years 1960-1998 in Porch et al. (2001) was thus 
analyzed.   
 

The two alternative stock-recruit models in ICCAT assessments of western Atlantic bluefin 
tuna are a small subset of potentially plausible stock-recruit models.  To meet the requirements of a 
minimal two factorial evaluation, I evaluated two additional model variants.  Marginal posteriors were 
thus computed also for the Beverton-Holt, regime shift and 2 Line no regime shift model variants. 
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To minimize the effects of priors on Bayes factors, I’d applied in this paper uniform on log R0 
and uniform on log Rbar priors and a maximum value for R of 1 in the uniform on log prior for R.  
To evaluate the potential effects on Bayes factors of different formulations of priors for model 
parameters, alternative priors for Rbar, and R0 in the 2 line and B-H models and a wider prior for the 
prior on R were evaluated. 
 
RESULTS 
 
For those not familiar with probability definitions, the following are provided.  A joint probability is 
the probability that a set of two or more non-mutually exclusive hypotheses is correct (i.e., provides 
an accurate representation of nature or what has actually happened).  An example is the probability 
that both the Beverton-Holt stock-recruit function and no regime shift hypothesis are correct.  A 
marginal probability is the probability that one particular hypothesis is correct, accounting for 
uncertainty across all of the other mutually exclusive hypotheses of interest, for example, the 
probability that the Beverton-Holt model is correct, integrated across the regime shift and non-regime 
shift hypotheses.  A conditional probability is the probability that one hypothesis or set of hypotheses 
is correct given that some particular condition or other set of hypotheses is correct.  An example is the 
probability that the Beverton-Holt model is correct given that there has been a regime shift.  Posterior 
probabilities are shown below where there are two or more different models being compared. 
 
Bayes factor for a given model represents the ratio of the total probability of the data for that model to 
that for some reference model.  This conveys the same information as the marginal posterior 
probability for a given model given the data, except that it does not include the prior probabilities for 
the different models.  Bayes factors are shown in some instances below to make it easier to make 
comparisons between two or more alternative models with regard to their credibility based on the 
available data. 
 
In the first set of results, I have kept the models compared the same as those compared in McAllister 
et al. (2001b) but used priors that have reduced effects on Bayes factors, a regime shift year of 1977 
instead of 1981, and the data for 1970-2006 from the 2010 ICCAT assessment (rather than only 1970-
1993).  The joint posteriors and Bayes factors for the four recruitment hypotheses in Table 3a indicate 
that the 2-line recruitment model hypotheses are four or more times less credible than the B-H models.  
According to the marginal posteriors (Table 3b), the Beverton-Holt functional form is more probable 
than 2-line (0.9 vs. 0.1).  The no regime shift hypothesis is equally probable as the regime shift 
hypothesis when the Beverton-Holt and 2 line models are both considered together (0.49 for the 
regime shift and 0.51 for no regime shift).  According to the conditional posterior probabilities (Table 
3c), no regime shift is slightly more probable than regime shift under the Beverton-Holt model but 
much less probable under the 2 line model (Fig. 1).  Given these results, the two-line regime shift 
hypothesis, though less likely, cannot be discarded since its Bayes factor when compared to the 
Beverton-Holt no regime shift model is not very small, e.g., i.e., not less than 0.01.  However, the data 
tend to support the Beverton-Holt function over the 2-line functional form, even with autocorrelation 
included and residual variance estimated separately for years before and after 1977.  The large 
recruitments in the early part of the time series are not fitted well by any of the four models (Fig. 1).   
 
Table 3a shows that the normalized (priors * Likelihood) evaluated at the posterior mode for each of 
four alternative models are very similar.  This number indicates how well the model with the best 
point estimate of the parameters fits the data, discounted by the log prior density at the posterior 
model.  If a more complex model provides only a marginally better fit to the data, the statistic is not 
expected to change very much as shown.  Normalizing the product of prior and likelihood at the mode 
shows relatively little difference between these naïve posterior probabilities.  The statistic however 
ignores the variation in goodness of fit as a result of parameter uncertainty within each model.  In 
contrast, the marginal posterior probability for each model (Table 3a) integrates the posterior 
distribution across all parameter values.  The marginal posterior probability and Bayes factor are more 
appropriate than model selection criteria that are based on the maximum likelihood estimate or mode 
(e.g., AIC or BIC) because they account for parameter uncertainty in each model (Kass and Raftery 
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1995) whereas AIC and BIC do not.  They will also tend to favor the most parsimonious models 
(models with fewer parameters) which fit the data well.  
 
The final step in the provision of stock assessment results according to the Bayesian approach is to 
present tables from model projections for each alternative model/hypothesis and policy evaluated 
along with the probability values for each alternative model/hypothesis.  To keep the illustration 
simple I have provided tables with indications of stock rebuilding potential based on results from the 
fitted stock-recruit models.  Posterior modal values are provided for recruits per ton of spawner 
biomass (R/S) for each model at spawner biomass (S) equal to 0 and S equal to the inflection points of 
the two-line models (Sinf), i.e., the average observed spawner biomass for 1990-1995 for the second 
regime and the value given by the same slope and estimate of Rbar for the first regime (Table 4).  
Under the regime shift hypothesis, R/S at S=0 under 2 line model was about a third of that under the 
Beverton-Holt model.  Under the no regime shift hypothesis, R/S at S=0 was 22% higher under the 2 
line model than that under the Beverton-Holt model.  Under the no regime shift hypothesis, R/S at Sinf 
under the 2 line model was 41% higher than that under the Beverton-Holt model.  Under the regime 
shift model, R/S at Sinf was 0.5% lower under the 2 Line model than that under the Beverton-Holt 
model in the second regime.  The value for steepness was considerably lower under the no regime 
shift model (0.47 (0.11)) compared to that under the regime shift model (0.72 (0.19)) and considerably 
more precise under the no regime shift hypothesis (posterior CVs shown in parenthesis after the 
posterior modal values).   
 
A key comparison is between the ratio of recruits per spawner (R/S) for the 2 line regime shift model 
and the Beverton-Holt no regime shift model since these are the two alternatives considered in the 
provision of management advice. The R/S at Sinf under the 2 line regime shift model is slightly higher 
(7%) than that under the Beverton-Holt no regime shift model (Table 4). These results indicate that 
the resilience to exploitation as indexed by R/S predicted under each alternative model depends 
strongly on whether a regime shift has been hypothesized and on the form of the stock-recruit 
function.   
 
A second key component of rebuilding potential is the apparent amount of rebuilding that is required 
given that stock biomass is considered to be low and in need of rebuilding as it is in recent 
assessments of western Atlantic bluefin tuna (ICCAT 2010).  It is clear that with the mean maximum 
recruitment under the regime shift 2 line model (78,000) is far less than the average unfished 
recruitment expected under the Beverton-Holt model and no regime shift (399,000) (Table 4).  The 
corresponding values for B0 reflect this large variation between the different models (Table 4).  These 
recruitment and B0 reference points could be expected to offer a rough approximation of the relative 
levels of stock biomass at the maximum sustainable yield (Bmsy) under these two alternative 
recruitment hypotheses, since Bmsy is commonly in the range of about 0.2 to 0.4 B0 for most exploited 
fish stocks. 
 
To check the assumption of autocorrelated residuals, the marginal posterior probabilities for the 
different models under no autocorrelation versus the reference case level of auto correlation were 
computed.  The marginal posterior for autocorrelation integrated across the four joint hypotheses on 
recruitment was 0.34, compared to 0.66 for no autocorrelation (Table 5).  The favoring of 
autocorrelation was strong only for the 2 line no regime shift model which has much more strongly 
pronounced patterns in autocorrelation of stock-recruit deviates than the other models (Figure 1).  Not 
surprisingly, if no autocorrelation was assumed, then the regime shift hypothesis obtained slightly 
higher marginal probability with 0.70, compared to 0.51 for no regime shift.  The probability of the 
Beverton-Holt model over the 2 line model was not as high when no autocorrelation was applied, i.e., 
0.62 compared to when an autocorrelation coefficient of 0.52 was assumed (Table 5). 
 
To check the assumption that the variance in residuals was different for years before 1977, the 
marginal posterior probabilities were computed for the models under different versus same variance.  
Under separate variances, the standard deviation in log recruitment deviates was about twice as high 
in the first regime compared to the second regime (Table 6a).  The marginal posterior for no 
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difference in variance integrated across the four joint hypotheses on recruitment however was 0.46, 
compared to 0.54 for different variances (Table 6).  The small number of data points for the first 
regime (only 7) likely prevented stronger support for there being a difference in the variance.  The 
Bayes posteriors for the Beverton Holt and 2 Line models under regime shift and no regime shift 
when the same variance was assumed were very similar to those obtained when the variance was 
assumed to be different between the regimes.  The favoring of the same variance assumption occurs 
mainly because of there being relatively few data points for the two separate time periods.  The same 
variance assumption thus did not affect the other marginal and conditional posteriors regarding the 2 
line and Beverton-Holt models (Table 6).   
 
The stock-recruit data used in this analysis were different from those used in the initial analysis 
(McAllister et al. 2001) since then only data up to 1993 were available and different growth curve and 
age-slicing inputs were applied to produce the catch-age data.  It is thus of interest to see whether 
results obtained with the updated analysis compare with those obtained by the previous analysis.  In 
one analysis I used the same stock-recruit data, 1970-1993, as were applied in McAllister et al. 
(2000b).  In a second analysis, I used the same years of stock-recruit data but instead those provided 
in the 2010 assessment (ICCAT 2010).  When the same data were used as in McAllister et al. (2000b), 
considerably smaller differences in Bayes factors were obtained than those in McAllister et al. 
(2000b).  With the updated analysis applied to the same data as in McAllister et al. (2000b), the 
Beverton-Holt no regime shift model was only about twice as likely as the 2 line regime shift model 
rather than about 70 times more likely in McAllister et al. (2000b) (Table 7).  The much lower Bayes 
factor for the Beverton-Holt no regime shift model resulted mainly from the different priors that were 
applied for model parameters, i.e., the uniform on log priors applied to R0 and Rbar in the Beverton-
Holt and 2 line this time, rather than the uniform priors applied last time to B0 and Rbar (see results 
below and Discussion section for more on this).  The previous analysis applied a regime shift year of 
1981 after the practice in earlier assessments; whereas this analysis applied the more recently applied 
year of 1977.  Computations showed that this change in year of regime shift had very little effect on 
the Bayes factors.  When the models were fitted to the same time segment of stock-recruit data from 
the 2010 assessment, the Bayes factors switch around to favor the 2 line regime shift model by a 
factor of 48.  This difference can be attributed to the difference in the configuration of the stock-
recruit data between those used in McAllister et al. (2001) and those obtained from ICCAT (2010).  
But when the full time series was used, i.e., 1970-2006, Bayes factor switched around in favor of the 
Beverton-Holt, no regime shift model by a factor of 4.8.   
 
Table 8 shows how Bayes factors for the two alternative recruitment model hypotheses (BH-NRS vs. 
2L RS) vary with different assumptions about autocorrelation, whether variance is estimated 
separately for the two regimes, the number of years of data included in the analysis, a different stock-
recruit data set and with different specifications for the priors for the estimated parameters.  With the 
autocorrelation coefficient set to zero, the 2L RS model obtained slightly higher Bayes factors when 
compared to a BH NRS model with the autocorrelation coefficient set to zero and either variance the 
same or different between the two regimes.  With the variance set to be equal between the two 
regimes, the 2L RS model is about five times less credible than the BH model, indicating that the 
presumption of positive autocorrelation in the 2 L model makes it less credible against the BH NRS 
model (Table 8). 
 
When the high 2003 recruitment point is removed from the analysis, the Bayes factor for the BH NRS 
model drops from 4.8 to 0.7, indicating that this high recruitment produced at low stock size 
contributes support for the BH NRS model.  When applied to stock-recruit data from 1970 to 2005 
and presuming a regime shift in 1977, the Bayes factors were 1:1 and favored neither hypothesis.  
When the 2006, 2007 and 2008 recruitment data points were included, Bayes factors favoured the 
Beverton-Holt model by factors of 4.8, 4.1 and 6.1, respectively (e.g., the probability of the data was 
4.1-6.1 times higher for the Beverton-Holt model compared to the two-line regime shift model).  The 
posterior probabilities for the Beverton-Holt model computed using uninformative prior probabilities, 
for years 2000-2008 are shown in (Fig. 2).  The posteriors switch from values close to zero up to 
2003, to 30% in 2004, and to about 80% in 2006 and subsequently.  The high sensitivity of the 
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posterior to new data can potentially be dampened by square root or double square root 
transformations as shown in Fig. 2. When Bayes factors were computed for the 1960-1998 stock-
recruit data set provided in SCRS 2001/52, Bayes factors supported the Beverton-Holt NRS model by 
a factor of 2.7.   
 
As indicated above, the formulation of the priors for model parameters strongly impacted Bayes 
factors.  When a uniform prior was placed on R0 in the Beverton-Holt NRS model, Bayes factor 
increased from 4.8 to 55.  When a uniform prior on log(B0) was applied instead of the uniform on 
Log(R0) prior, Bayes factor increased from 4.8 to 5.8.  When the uniform prior for R was extended 
from uniform on (0.1,1) to uniform on (0.1, 2) Bayes factor for the BH-NRS model increased from 
4.8 to 5.6.  When the uniform prior for R was extended from uniform on (0.1,1) to uniform on (0.1, 
2) and uniform on Rbar and uniform on B0 priors were applied, Bayes factor for the BH-NRS model 
increased from 4.8 to 67.  These results show that the most important formulation for priors on 
location parameters (e.g., R0, Rbar, B0) is to apply priors to the log transformed values of parameters, 
rather than to formulate prior density functions for the non-log transformed values.  For parameters 
that are scale parameters such as R, or that range between close to zero and close to 1, the 
formulation of the prior has very little impact on Bayes factors.   
 
 
DISCUSSION 
 

This paper offers an update in the analysis of the empirical credibility of the western Atlantic 
bluefin tuna stock recruit model hypotheses.  It uses stock-recruit data for this stock updated from the 
2010 assessment to further illustrate a methodology that could be applied in the current and future 
assessments of bluefin tuna and other ICCAT fish stock assessments to help deal with structural 
uncertainties in the provision of management advice.  Several recent works have recognized the 
importance of providing a systematic and scientifically grounded approach to providing empirically 
based weights for structurally different stock assessment models (Butterworth et al. 1996; Punt and 
Hilborn 1997; McAllister and Kirkwood 1998; McAllister et al. 1999; Parma 2000; Punt et al. 2000; 
McAllister and Kirchner 2002).  Importance sampling has been one of the statistical methods 
developed for this purpose (Kass and Raftery 1995; McAllister and Kirkwood 1998; McAllister et al. 
2000; McAllister and Kirchner 2002).  As mentioned above, the approach is compatible with the main 
stock assessment methodologies applied in ICCAT ADAPT VPA methods and surplus production 
modeling (McAllister et al. 2000).  For example, the Bayesian methods can be applied to the stock 
and recruit data points produced by VPA or catch-age methods to indicate the weight of evidence in 
support of the different stock-recruit model assumptions.  These weights could potentially be helpful 
to present when presenting the results of policy projections which were based on the different stock-
recruit model assumptions. 
 
 This paper further demonstrates how importance sampling can be applied to compute 
empirical weightings for stock-recruit models with different assumptions about the recruitment of 
western Atlantic bluefin tuna.  The paper extends the work in McAllister et al. (2000a, b) to further 
evaluate stock-recruit model assumptions.  Autocorrelation in stock-recruit residuals was incorporated 
as in McAllister et al. (2000b).  In contrast to McAllister et al. (2000b), Bayes factors were only 
mildly sensitive to autocorrelation in recruitment deviates except for the 2 line, no regime shift model.  
A difference in the variances of these deviates was also considered before and after 1977.  Steepness 
in the Beverton Holt model was not estimated separately under the regime shift hypothesis for the two 
successive regimes mainly due to the paucity of data with which to estimate steepness for the 1st 
regime and the failure to find any support for the estimation of a second steepness parameter in 
McAllister et al. (2000b).   
 
 The findings of McAllister et al. (2000a,b) in favour of the Beverton-Holt no regime shift 
model were found in the current analysis to be too strong, due to the use of naïve priors for the 
location parameters, B0 and Rbar.  With adjustments to minimize the impact of the priors on Bayes 
factors, the stock-recruit data still tended to favour the Beverton-Holt formulations over the 2 line 
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formulations (i.e., about 7 to 1).  Bayes factor, i.e., 4.8, for the Beverton-Holt no regime shift model 
when the full time series, 1970-2006, was used was only mildly in favour of this model over the 2 line 
regime shift model.  The 2 line formulations gave mostly fairly similar values this time for recruits per 
spawner compared the Beverton Holt ones over the current range of spawning stock sizes.  The lower 
empirical weights for the 2 line formulations would suggest that the 2 line formulations be treated 
with greater skepticism in future stock assessments. 
 
 Using the 1970-2006 data from the 2010 assessment, lead to Bayes factors ranging 2:1 against 
to 67:1 in favor of the Beverton-Holt no regime shift model hypothesis over the 2 line regime shift 
hypothesis when different assumptions about autocorrelation, the variance in recruitment deviates, 
and priors for the estimated parameters were considered.  Under their reference case settings for the 
two models, McAllister et al. (2000b) obtained markedly higher Bayes factors in favor of the 
Beverton-Holt no regime shift hypothesis when compared to the 2 line no regime shift hypothesis.  
This is mainly a result of the different priors applied to Rbar and B0 between McAllister et al. (2000b) 
and in this paper and the different configuration of the stock-recruit data, for years since 1977.  In one 
of the  sensitivity runs in this paper, we applied priors very similar to those in McAllister et al. 
(2000b) and obtained Bayes factors similarly as large for the Beverton-Holt no regime shift model as 
obtained in McAllister et al. (2000b), i.e., the new analysis gave 67 compared to about 70 in the 
previous analysis.  The uniform on log B0, uniform on log R0, and uniform on log Rbar priors have less 
between-model influence on Bayes factors because these priors have log(Rbar) and log(B0) values in 
the denominator of the prior density function rather than just B0 and Rbar values in the denominator of 
the uniform on B0 and Rbar priors.  Also over the range of support from the data, the values of Rbar 
under the 2 line models tend to be a few times higher than the B0 values under the Beverton Holt 
models (Table 4).  When a regime shift is considered, the straight uniform priors on B0 or Rbar will 
thus tend to heavily down-weight the regime shift variants and the two line models.  With log B0, log 
R0 or log Rbar in the denominator of the prior, the differential effects on Bayes factors for the different 
models are very low and differences in model fits to the data dominate the values obtained for Bayes 
factors.  It was also an improvement to reparameterize the Beverton-Holt model from B0 to R0.  The 
key location parameters in the Beverton-Holt and 2 line models were thus directly comparable, in the 
same units and having similar ranges of values. The uniform on log priors for these parameters thus 
minimized their influence on the values obtained for Bayes factors.   
 

In addition, the range for the priors for the standard deviation in recruitment deviates (R) was 
1.9 in McAllister et al. (2000b) but on only 0.9 in this analysis.  This prior with the wider interval will 
more strongly influence Bayes factors and down-weight the regime shift model with the estimation of 
the extra R parameter in the regime shift model. The effect of wider priors on R increased the Bayes 
factor in favor of the Beverton-Holt no regime shift model from 4.8 with the uniform priors on log 
Rbar and log R0 and maximum on R of 1 to a Bayes factor of 5.6.  When both the wider priors on R 
and uniform on Rbar and B0 priors were applied, the Bayes factors in favour of the Beverton-Holt 
function became highly exaggerated at 67.  This shows that inappropriate choice of priors for two or 
more model parameters can very strongly influence Bayes factors and priors should thus be chosen 
very judiciously to avoid having them influence Bayes factors.  In this analysis, the use of uniform on 
log priors, reparameterization to make the location parameters more comparable in their range of 
plausible values, and use of priors that have narrower ranges thus tend to allow the data to speak for 
themselves more about the credibility of the different models. 

 
The data used in the computation of Bayes factors in this analysis also strongly impacted the 

Bayes factor values obtained for the alternative stock-recruit models.  When the initial set of years of 
data available for analysis were evaluated using the data from ICCAT (2010), i.e., 1970-1993, Bayes 
factors favoured the 2 line no regime shift model by a factor of 48.  In contrast, the same set of years 
of data available from the 1998 stock assessment (ICCAT 1999), gave a Bayes factor of 2.1 in favour 
of the Beverton-Holt no regime shift model.  When subsequent years of data were included in the 
analysis of the ICCAT (2010) assessment data, Bayes factor switched over in favour of the Beverton-
Holt no regime shift model by a factor of about 5.  The very high abundance of the 2002 cohort which 
was about two thirds of the average value for the large cohorts in the 1970s, strongly reduced the 
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values of Bayes factors in favour of the two line, no regime shift model.  The very low cohort in 2005, 
further shifted Bayes factors in favour of the Beverton-Holt model.   

 
The swings in the values obtained for Bayes factors when the stock-recruit models were fitted 

to a growing time series of stock-recruit data suggest that when data sets are relatively short, e.g., less 
than 25 years, as was the case for data up to the mid-1990s, and the variation in spawning stock size 
has remained low for many years, as in the present analysis, Bayes factors obtained should be 
interpreted with caution.  One-way trip data sets such as the ones analyzed in this paper in which 
abundance data start out high and progressively decrease have long been pointed out as problematic 
for parameter estimation in fisheries models (Hilborn and Walters 1992).  One-way trip data can be 
expected to be relatively uninformative for the evaluation of the credibility of structurally different 
models (McAllister and Kirchner 2002), though in this case, it appears that Bayes factors quite 
strongly favoured the 2 line model with the models fitted to stock-recruit data 1970-mid-1990s to the 
early 2000s but then switched over to favour slightly the Beverton-Holt model with subsequent data.  
Strong swings in Bayes factors from one hypothesis to another suggest that used by itself Bayes factor 
may be overly sensitive to changes in the configurations of apparently informative data that is actually 
limited due to poor contrasts in the range of data obtained.  Two alternative approaches to reduce the 
sensitivity of Bayes factors to slight changes in the configurations of datasets and to prevent Bayes 
factors from giving excessively high weights to one model when data are actually limited, are as 
follows.  Double square root transform Bayes factors will reduce the potential for extremes in the 
values obtained and reduce the chance of false positives, i.e., placing too much weight on a given 
model prematurely when the data may be not have sufficient contrast to make strong conclusions.  
The precision in the likelihood function for the most recently obtained stock-recruit estimates could 
be reduced, since estimates of abundance for the most recent years are typically the most poorly 
determined.  This would further reduce the sensitivity of Bayes factors to the most recently added data 
points and further reduce the potential for large changes in Bayes factors from the addition of the most 
recent years of stock-recruit data which tend to be the most imprecisely estimated points in the series 
and most prone to updating with updates in the stock assessment.  Further research is needed to 
explore and develop this latter approach for practical application. 
 
 Posterior probabilities this time did not favor the autocorrelation structures, except for the 2 
Line, no regime shift model.  If no autocorrelation was assumed, the regime shift formulations 
became favored slightly over no regime shift ones (about 60:40).  This also indicates that the regime 
shift and no regime shift hypotheses should not be ignored in the decision analyses of alternative 
stock rebuilding policies, despite the considerably more optimistic interpretations about the level of 
rebuilding effort required under the regime shift formulations.   
 
 Although the results did not strongly favor keeping the variances (and steepness in the 
Beverton-Holt model) separate for the earlier and later part of the time series, these assumptions were 
not strongly refuted by the data.  Keeping the variances separate, especially to allow a larger variance 
for the earlier part of the time series is sensible, since these earlier data points may be less reliable 
than those for the latter part of the time series and a larger variance down-weights these earlier data in 
the estimation.  While keeping the steepness values separate for the early and latter parts of the time 
series may seem sensible, as it is plausible that steepness can change depending on oceanographic 
regime, there are too few data in the early years to enable estimation of steepness.  Model parsimony 
rationale would thus support assuming that either steepness or alpha remains the same for the first and 
second regime, should a regime shift hypothesis be considered for western Atlantic bluefin tuna.   
 
 Fitting the models to a stock-recruit data set derived from a catch-age methodology that did 
not apply within it a stock-recruit function and that went back further in time when recruitment was 
higher than in the recent past (Porch et al. 2001), provided Bayes factors that also favoured the 
Beverton-Holt no regime shift hypothesis.  However, the support was only mildly pronounced.  This 
may be due to the shortness and lack of contrast in the latter part of this time series.   
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It is noted that the stock-recruit data obtained from ICCAT's assessments remain possibly 
biased due to migrations of the much larger eastern Atlantic population into the western Atlantic.  
ICCAT stock assessments have assumed that all Atlantic bluefin tuna captured to the west of 45 
degrees west, are of western origin.  Recent modeling efforts to account for stock mixing in a spatially 
structured stock assessment model for eastern and western Atlantic bluefin tuna suggest that the 
fraction of eastern origin fish in the western Atlantic has varied substantially since the 1950s (Taylor 
et al. 2011).  Some of the apparent variation in estimates of western Atlantic bluefin tuna spawning 
stock size and recruitment since 1970 seen in ICCAT assessments could thus be artifacts of variation 
in the migrations of the much larger eastern Atlantic bluefin tuna spawning population. It is thus 
recommended that further efforts be devoted to improving understanding of western Atlantic bluefin 
tuna recruitment using estimates of recruits and SSB that are not contaminated by eastern stock 
migrations. 
 

These results demonstrate that, with suitable statistical methodology, stock-recruit data can 
themselves provide an empirical basis to weight structurally different stock recruit models.  This can 
provide valuable scientific guidance for policy evaluation that has been previously left out of ICCAT 
stock assessments.  Scientists can now provide the guidance that was previously lacking regarding 
empirical weightings for structurally different stock-recruit models.  The particular data analysis could 
not readily distinguish whether a regime shift had occurred.  The updated data analysis again cast 
doubt on the 2 line model which since the 1998 stock assessment has been given considerable 
attention by fishery scientists and managers.  The data analyses instead tended to support the 
Beverton-Holt model no regime shift hypothesis which has all along been considerably less optimistic 
about stock rebuilding requirements than the two line regime shift hypothesis and has been 
consistently down-weighted by fishery managers, as they then lacked scientific guidance to suggest 
otherwise. 
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Table 1.  Stock –Recruit data for Western Atlantic Bluefin tuna from the 1998 assessment (digitized 
from Figure 38 of ICCAT (1999)) and from the 2010 assessment (source: Laurie Kell, ICCAT, 
Madrid).   
 

Year SSB from 
1998 

assessment 

Age 1 
recruits from 

1998 
assessment  

SSB from 
2010 

assessment 

Age 1 
recruits from 

2010 
assessment  

1970 49051 277190 51038 363536 
1971 44356 244160 50782 321829 
1972 44148 171620 51189 278125 
1973 42590 499180 51460 150433 
1974 44006 146140 46167 465130 
1975 38152 138680 40953 163672 
1976 37363 89715 36091 134434 
1977 32162 56721 30952 111394 
1978 29845 84324 27648 94041 
1979 23919 69025 24448 98822 
1980 23703 65117 22152 80273 
1981 21390 63308 19019 79471 
1982 20807 100600 17874 80865 
1983 20016 71241 17109 102330 
1984 16834 79292 16232 91014 
1985 13724 89299 14612 96051 
1986 12932 67782 14942 99517 
1987 11483 89446 14310 86058 
1988 10404 48340 14168 130704 
1989 9244.6 69984 13714 112941 
1990 8880.1 95498 13115 107223 
1991 7728.9 50475 12784 85225 
1992 6929.7 83861 12362 71585 
1993 6935.8 32880 12468 66086 
1994 NA NA 12306 73885 
1995 NA NA 12756 97900 
1996 NA NA 13717 82474 
1997 NA NA 14535 69102 
1998 NA NA 14646 77109 
1999 NA NA 13949 72349 
2000 NA NA 13753 67294 
2001 NA NA 13131 75986 
2002 NA NA 12508 56892 
2003 NA NA 12016 60150 
2004 NA NA 12435 207191 
2005 NA NA 12871 76543 
2006 NA NA 12864 28708 
2007 NA NA 13751 42416 
2008 NA NA 14034 25297 
2009 NA NA 14072 25825 

 



Table 2.  List of comparisons between alternative stock-recruit (S-R) models with rationale provided for each comparison.   
 
Descriptor Variant Run information 

Ref.B-H.NRS  Beverton-Holt, no regime shift, 1970-2006 data, auto-correlation coefficient () for stock-recruit function deviates set at 0.52 Ref. Reference case runs 
Ref.2-L.RS Two-line, 1977 regime shift, 1970-2006 data,  set at 0.52, variance in stock-recruit deviates also changed in 1977 (ICCAT 2010) 
A.B-H.NRS.1 Beverton-Holt, 1970-2006, no regime shift, lag-1 auto correlation set at zero 
A.2-L.1 Two line, regime shift, auto-correlation set at zero, variance in S-R deviates changes in 1977, 1970-2006 
A.2-L.RS.2 Two line, regime shift,  set at zero, no change in variance in S-R deviates, 1970-2006 

A. Auto-correlation and S-R 
variance assumptions 

A.2-L.RS.3 Two line, regime shift,  set at 0.52, variance in S-R deviates does not change in 1977, 1970-2006 
B.B-H.NRS.1 Beverton-Holt, no regime shift, S-R data (ICCAT 2010) for 1970-1993 only,  = 0.52 
B.2-L.RS.1 Two line, regime shift, S-R data (ICCAT 2010) for 1970-1993 only,  = 0.52, variance in S-R deviates changes in 1977 
B.B-H.NRS.2 Beverton-Holt, no regime shift, 1970-1993 data (ICCAT 1998),  = 0.52 
B.2-L.RS.2 Two line, regime shift, 1970-1993 data (ICCAT 1998),  = 0.52, variance in S-R deviates changes in 1977 
B.2-L.RS.3 Beverton-Holt, no regime shift, 1970-1993 data (ICCAT 1998),  = 0.52, uniform on B0 and max R at 2 

B.  Comparisons using SCRS 
2000/103 inputs. 

B.2-L.RS.3 Two line, regime shift, 1970-1993 data (ICCAT 1998),  = 0.52, variance changes 1977, uniform on B0 and max R at 2 
C. B-H.NRS.1 Beverton-Holt NRS 1970-2006 but exclude 2003 cohort, 

C.2-L RS.1 2-Line Regime shift cohort, 1970-2006 but exclude 2003 

C. B-H.NRS.2 Beverton-Holt NRS, fitted to 1970-2005 series. 

C.2-L.RS.2 2-Line with regime shift in 1977 fitted to 1970-2005 series. 

C. B-H.NRS.3 Beverton-Holt NRS fitted to 1970-2007 series 

C.2-L RS.3 2-Line Regime shift  fitted to 1970- 2007 series 

C. B-H.NRS.4 Beverton-Holt NRS fitted to 1970-2008 series 

C.  The effects of adding or 
subtracting data points 

C.2-L.RS.4 2-Line Regime shift in1977 fitted to 1970- 2008 series 

D. B-H.NRS.1 Beverton-Holt NRS fitted to 1960-1998  series D. Alternative stock-recruit 
data D.2-L.RS.1 2-Line Regime shift in1977 fitted to 1960- 1998 series 

E.2-L.NRS.1 Two-line, no regime shift, 1970-2006 data,  set at 0.52 (ICCAT 2010) E. B-H regime shift and 2-L 
no regime shift variants E.B-H.RS.1 Beverton-Holt, regime shift  1970-2006 data, variance in deviates changed in 1977;  set at 0.52 (ICCAT 2010) 

F.B-H.NRS.1  Beverton-Holt as reference case except for the prior for R0 is uniform on R0. 
F.2-L.RS.1 2 Line as reference case except for the prior on Rbar being uniform on Rbar 
F.B-H.NRS.2  Beverton-Holt as reference case except that model is reparameterized with a uniform on log(B0) prior. 
Ref.2-L.RS.1 2 Line as reference case with the prior on Rbar being uniform on log(Rbar) 
F.B-H.NRS.3 Beverton-Holt as reference case except for the maximum R is 2 rather than 1 
F.2-L.RS.3 2 Line as reference case except for the maximum R is 2 rather than 1 
F.B-H.NRS.4 Beverton-Holt as reference case except for the prior for R0 is uniform on R0 and the maximum R is 2 rather than 1 

F. Alternative priors for Rbar, 
B0 and R in the 2-L and B-H 
models 

F.2-L.RS.4 2 Line as reference case except for the the prior on Rbar being uniform on Rbar and the maximum R is 2 rather than 1 

 



Table 3.  Bayesian posteriors and other statistics for alternative hypotheses on the form of the stock-
recruit function and on whether a regime shift has occurred, for western Atlantic bluefin tuna.   
 
a.  Joint posteriors, Bayes factors, and log prior * likelihood for the four alternative hypotheses.  A 
statistic (the coefficient of variation in the average of weights from importance sampling) showing 
numerical stability in the Bayes factors, i.e., CV< 0.05. 
 
 H1: Beverton-Holt, 

no regime shift 
H2: Beverton-

Holt, regime shift
H3: 2-line, no 
regime shift 

H4: 2-line, 
regime shift 

Number of estimated parameters 3 5 2 4 

Joint Posterior Probability 0.48 0.41 0.0005 0.10 

Bayes factors (ref. to H1) 1 0.86 0.001 0.21 

ln(prior*LH) at posterior mode 166.175 165.447 166.556 166.216 

Normalized(prior*LH) 0.25 0.12 0.37 0.26 

CV(average of weights) 0.022 0.022 0.011 0.025 

 
b.  Marginal posteriors 
 

P(Regime Shift) P(no Regime Shift)

0.51 0.49 

 

P(Beverton Holt) P(2 Line) 

0.90 0.10 

 
c.  Conditional posteriors 
 

P(Regime shift | BH) P(no Regime shift | BH) 

0.46 0.54 

 

P(Regime shift | 2L) P(no Regime shift | 2L) 

0.995 0.005 

 
 



Table 4. Median stock rebuilding potential as indexed by recruits per spawner under each of the four 
hypotheses on recruitment and occurring at S = 0 and S=Sinf (12,640t).  Proxies for reference case 
stock levels are indicated by the posterior modal values for average unfished recruitment (R0).  The 
values for steepness are the posterior modal values.  The number in parentheses shows the posterior 
coefficient of variation for steepness.  Recruits per spawner is in recruits per ton of spawners. 
 

 Regime shift No regime shift 

Stock-Recruit Function Beverton-Holt 2 Line Beverton-Holt 2 Line 

Bayes factors 0.86 0.21 1 0.001 

R/S at S=0  19.1 6.2 6.8 8.3 

R/S at S=Sinf, 1st regime 5.1 6.2 5.8 8.3 

R/S at S=Sinf, 2nd regime 6.3 6.2 NA NA 

B-H mean steepness  0.72 (0.19) NA 0.47 (0.11) NA 

Mean unfished 
recruitment (R0, Rbar) 1st 
regime 

292,000 288,000 399,000 104,000 

Mean unfished 
recruitment (R0, Rbar) 2nd 
regime 

106,000 79,000 NA NA 

Sinf 1st regime NA 46,150 t NA 12,640 t 

Sinf 2
nd regime NA 12,640 t NA NA 

B0 first regime 154,000 t 152,000 t 211,000 t 55,000 t 

B0 second regime 56,000 t 42,000 t NA NA 

r first regime 0.59 0.54 0.43 0.52 

r second regime 0.37 0.39 NA NA 
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Table 5.  Bayesian marginal posterior probabilities for alternative hypotheses on a. model versions 
with and without lag one autoregressive autocorrelation in recruitment deviates with the coefficient 
() set at the value in the 2010 assessment (0.52), b. whether autocorrelation is present in the stock 
recruit deviates integrating across the different models, c. the different recruitment hypotheses when 
no autocorrelation is assumed, d. regime shift versus no regime shift and Beverton-Holt versus 2 line 
assuming no autocorrelation, and e. the regime shift conditional on the recruitment model. 
 
a. Marginal posteriors 

 

 Autocorrelation No autocorrelation 

BH NRS 
0.45 0.55 

2L RS 
0.12 0.88 

BH RS 
0.40 0.60 

2L NRS 
0.9995 0.0005 

 
b.  Marginal posteriors 
 

P(autocorrelation) P(no autocorrelation) 

0.34 0.66 

 
c.  Joint posteriors for the four alternative hypotheses assuming no autocorrelation (but separate 
variances for before and after 1977) 
 
 H1: Beverton-

Holt, no regime 
shift 

H2: Beverton-Holt,  
regime shift 

H3: 2-line, no 
regime shift 

H4: 2-line, regime 
shift 

Joint Posteriors 0.30 0.31 0 0.39 

Bayes factors 1 1.04 0 1.3 

 
d.  Marginal posteriors assuming no autocorrelation (but separate variances for before and after 1977) 
 

P(Regime Shift) P(no Regime Shift) P(Beverton Holt) P(2 Line) 

0.70 0.30 0.62 0.38 

 
e.  Conditional posteriors assuming no autocorrelation (but separate variances for before and after 
1977) 
 

P(Regime shift | BH) P(no Regime shift | BH) P(Regime shift | 2L) P(no Regime shift | 2L) 

0.51 0.49 0.9999997 0.0000003 
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Table 6.  Bayesian posteriors for alternative hypotheses on the form of the stock-recruit function and 
on whether a regime shift has occurred, for western Atlantic bluefin tuna assuming the same residual 
variance over the entire time series.   
 
a.  Marginal posteriors and posterior modal values for the SD in model residuals. 
 

 P(different variance) P(same variance)

 0.54 0.46 

 
76 >76 

BH, RS 0.59 0.37 0.43 

2 L, RS 0.54 0.39 0.52 

 
b.  Joint posteriors for the four alternative hypotheses assuming the same variances for before and 
after 1977 (including autocorrelation) 
 
 H1: Beverton-

Holt, no regime 
shift 

H2: Beverton-Holt,  
regime shift 

H3: 2-line, no 
regime shift 

H4: 2-line, regime 
shift 

Joint Posteriors 0.53 0.36 <0.00001 0.11 

 
c.  Marginal posteriors assuming the same variances for before and after 1977 (including 
autocorrelation) 
 

P(Regime Shift) P(no Regime Shift)

0.47 0.53 

 

P(Beverton Holt) P(2 Line) 

0.88 0.12 

 
d.  Conditional posteriors assuming the same variances for before and after 1977 (including 
autocorrelation) 
 

P(Regime shift | BH) P(no Regime shift | BH) 

0.40 0.60 

 

P(Regime shift | 2L) P(no Regime shift | 2L) 

0.995 0.005 
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Table 7.  Bayes factors for the two main alternative recruitment hypotheses in assessments of western 
Atlantic bluefin tuna since 1998 considering data available for McAllister et al. (2000b).  The 
first data set is that used in their analysis.  The second dataset is that applied in this updated 
analysis but using data only up to 1993 as in the previous analysis.   

 

Source Years Beverton-
Holt, no 
regime shift  

Two-line 
regime shift 

ICCAT 2010 1970-2006 1 0.21 

ICCAT 2010 1970-1993 1 48 

ICCAT 1999 1970-1993 1 0.47 
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Table 8.  Bayes factors for the Beverton Holt no regime shift and 2 line 1977 regime shift models 
under different assumptions about variance and autocorrelation in the recruitment deviates. 

 
Descriptor Model 

Variant 
Run information Bayes 

factor 
1/ Bayes 
factor 

Ref.B-H.NRS  Beverton-Holt, no regime shift with S-R data 1970-2006, 
auto-correlation coefficient () for stock-recruit function 
deviates set at 0.52 (ICCAT 2010) 

1 1 Ref. 
Reference 
case 

Ref.2-L.RS Two-line, regime shift with S-R data 1970-2006,  set at 0.52, 
variance in S-R deviates also changed in 1977 (ICCAT 2010) 

0.21 4.8 

A.B-H.NRS.1 B-H, no regime shift, lag-1 auto correlation set at zero 1 1 
A.2-L.1 Two line, regime shift auto-correlation set at zero, variance in 

S-R deviates changes in 1977 
1.27 0.8 

A.2-L.RS.2 Two line, regime shift,  set at zero, no change in variance in 
S-R deviates 

2.05 0.5 

A. Auto-
correlation 
and S-R 
variance 
assumptions 

A.2-L.RS.3 Two line, regime shift,  set at 0.52, variance in S-R deviates 
does not change in 1977 

0.18 5.7 

C. B-
H.NRS.1 

B-H NRS 1970-2006 but exclude 2003 cohort 0.72 1.4 

C.2-L RS.1 2-L Regime shift, 1970-2006 but exclude 2003 1 1 

C. B-
H.NRS.2 

B-H NRS, fitted to 1970-2005 series. 1 1 

C.2-L.RS.2 2-Line with regime shift fitted to 1970-2005 series. 0.98 1.02 

C. B-
H.NRS.3 

B-H NRS fitted to 1970-2007 series 1 1 

C.2-L RS.3 2-L Regime shift  fitted to 1970- 2007 series 0.23 4.4 

C. B-
H.NRS.4 

B-H NRS fitted to 1970-2008 series 1 1 

C.  The 
effects of 
adding or 
subtracting 
data points 

C.2-L.RS.4 2-L Regime shift in 1977 fitted to 1970- 2008 series 0.16 6.1 

D. B-
H.NRS.1 

B-H NRS fitted to 1960-1998  series 1 1 D. 
Alternative 
stock-recruit 
data 

D.2-L.RS.1 2-L Regime shift fitted to 1960- 1998 series 0.37 2.7 

F.B-H.NRS.1  Beverton-Holt as reference case except for the prior for R0 is 
uniform on R0. 

1 1 

F.2-L.RS.1 2 Line as reference case except for the prior on Rbar being 
uniform on Rbar 

0.018 55 

F.B-H.NRS.2  Beverton-Holt as reference case except that model is 
reparameterized with a uniform on log(B0) prior. 

1 1 

Ref.2-L.RS.1 2 Line as reference case with the prior on Rbar being uniform 
on log(Rbar) 

0.17 5.8 

F.B-H.NRS.3 Beverton-Holt as reference case except for the maximum R is 
2 rather than 1 

1 1 

F.2-L.RS.3 2 Line as reference case except for the maximum R is 2 
rather than 1 

0.18 5.6 

F.B-H.NRS.4 Beverton-Holt as reference case except for the prior for R0 is 
uniform on R0 and the maximum R is 2 rather than 1 

1 1 

F. 
Alternative 
priors for 
Rbar, B0 and 
R in the 2-
L and B-H 
models 

F.2-L.RS.4 2 Line as reference case except for the the prior on Rbar being 
uniform on Rbar and the maximum R is 2 rather than 1 

0.015 67 
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Figure 1. Posterior modal stock-recruit relationships for each of four alternative hypotheses on 

recruitment for western Atlantic bluefin tuna. a.  Beverton-Holt function, no regime shift.  b.  
Beverton-Holt function, regime shift in 1977.  c. 2 Line, no regime shift.  d. 2 Line regime 
shift in 1977.   

 
 

 25



 

Posterior probabilities for the Beverton-Holt 
model with different ending years of the 

ICCAT 2010 dataset

0.00

0.25

0.50

0.75

1.00

2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

P
(B

-H
, 

N
R

S
)

0

100

200

300

R
ec

ru
it

s 
(0

00
s)

No transformation

SQRT

Double SQRT

Recruits

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Bayesian posterior probabilities for the Beverton-Holt stock-recruit function when 

compared to the 2 Line regime shift model when compared to the 2010 estimates of age 1 
recruits, and to square root and double square root transformations of the Bayes factors used 
to compute them.  The latter was done to dampen the large interannual changes in the 
posterior probabilities with new data.    
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