Research: Nanotechnology's Health And Environmental Effects Shows Need For More Resources

Navigate to:

Research: Nanotechnology's Health And Environmental Effects Shows Need For More Resources

Washington, D.C. - 11/29/2005 - A new inventory of research into nanotechnology's potential environmental, human health and safety effects shows the need for more resources, for a coherent risk-related research strategy, and for public-private partnerships and international research collaborations, according to information released by the Project on Emerging Nanotechnologies. These are the key conclusions drawn from the first single inventory of largely government-funded research projects exploring nanotechnology's possible environmental, health and safety impacts.

This unique inventory is publicly available online at: www.nanotechproject.org. It was compiled by the Project on Emerging Nanotechnologies at the Woodrow Wilson International Center for Scholars. The Project is a partnership of The Pew Charitable Trusts and the Wilson Center.

“For the first time, policymakers, corporations and others can access and assess the scope, quality and efficacy of federally-funded research projects examining nanotechnology's potential human health and environmental effects. The inventory gives government officials and scientists in industry and academe the opportunity to work together. It enables them to develop a coherent research roadmap and to set research priorities. It helps makes possible the planning necessary to create public-private sector partnerships and international collaborations for risk-related nanotechnology research programs in the future,” said Dr. Andrew Maynard, the Project on Emerging Nanotechnologies' chief scientist.

Total U.S. spending on all nanotechnology research and development now stands at approximately $3 billion per year—about one-third of the estimated $9 billion invested worldwide by the public and private sectors combined. By 2015, the National Science Foundation projects that nanotechnology will have a $1 trillion impact on the world economy and employ 2 million workers globally.

Too Little Being Spent on Future Effects of Nano Toxicity

“The federal government's National Nanotechnology Initiative estimates that approximately $39 million annually in government funds—out of total expenditures of about $1 billion—are directed at environmental, health, and safety R&D. The Project on Emerging Nanotechnologies' inventory identifies about $27 million currently being spent by the U.S. government to explore possible adverse health, environmental and safety impacts of engineered nanomaterials or nanoparticles,” said Maynard. “That limited investment is focused on research into human toxicity studies and some direct environmental impacts. Very little is being spent to investigate common workplace safety issues like the risk of explosion in production of nanopowders.”

“In addition, most of this investment focuses on first generation nanotechnologies, many of which are already in the marketplace. Virtually none deals with future generations of nanomaterials,” according to Maynard.

Little funding is allocated to explore possible links between exposure to nanomaterials and diseases of the lung, heart or skin. Similar to last year's Royal Society and Royal Academy of Engineering study (July 2004), the project's scientists are not able to identify U.S. government-sponsored epidemiological research looking at the relationship between exposure and possible long-term health outcomes during the manufacture of nanomaterials like carbon nanotubes.

“Specifically, out of a total of 161 federally-funded, risk-related projects, the project's scientists found only 15 relevant to occupation-caused physical injury (totaling $1.7 million), and only 2 highly relevant projects on the long-term environmental and occupational exposures that potentially could cause disease (totaling $0.2 million). These are important gaps that must be filled to ensure that nanotechnology is safely commercialized and accepted by the public as not harmful,” stated Dr. Maynard. “In particular, more research is needed to address the potential life-cycle impacts of nanotechnology-based products as they move from manufacture to use and to eventual disposal.”

Inventory Is Critical Start, But Global Action Is Needed

“This first inventory is not comprehensive, but it is the best available, detailed and scientifically-classified collection of data about nanotechnology risk-related research that exists either inside or outside government,” declared Dr. Maynard. “It is intended to be international and expanding, and will be regularly updated.”

Project on Emerging Nanotechnologies Director David Rejeski noted that “Some experts suggest that existing funding for risk-related nanotechnology research must be doubled or tripled. Realistically, no single country is likely to have adequate resources to cover all risk assessment needs, especially as nanotechnologies advance and become more complex and pervasive. What is clear from the inventory is that increased funding must be associated with an overarching research strategy and partnerships, if critical issues are to be addressed with ‘due diligence.'”

“We need an international Nanorisk Research Program built on shared knowledge and a clear set of priorities. This inventory is an important tool for building partnerships between governments, and between governments and industry, which will ensure that risks to workers, consumers, and the environmental are adequately understood and addressed,” suggested Rejeski.

Global Risk Research Funding Also Inadequate
“The good news,” said Dr. Maynard, “is that the U.S. appears to be spending more on environmental, health and safety research than any other government. The second largest funder of risk-related research is the European Commission, which spends an estimated $7.5 million per year in partnership with industry through its multiyear NANOSAFE2 and other programs.”

“The bad news is that current spending levels are not adequate to begin to answer the difficult environmental and human health impact questions raised by worker exposure to nanomaterials, by rapid consumer product commercialization and eventual disposal, and by concentrated environmental exposures from the possible application of nanoparticles to soil or water for remediation purposes in the future. These questions need answers, even though many of these new nanotechnology uses and applications have the potential to be cleaner and safer than existing alternatives,” said Maynard.

“Nanotechnologies hold tremendous promise. Many of tomorrow's medical breakthroughs, new jobs, and communication leaps depend on it. That's why The Pew Charitable Trusts and the Wilson Center created the Project on Emerging Nanotechnologies,” according to Rejeski.

“But nanotechnology's future depends on the willingness of government, business and public interest groups—both at home and abroad—to work together to build consumer trust and to tackle any potential health and environmental issues early. This inventory is a tremendous tool to help achieve this important goal,” said Rejeski.

Pew is no longer active in this line of work, but for more information, visit the Project on Emerging Nanotechnologies on PewHealth.org.

About Project on Emerging Nanotechnologies

The Project on Emerging Nanotechnologies was launched in April 2005 by the Wilson Center and The Pew Charitable Trusts. It is dedicated to helping business, governments, and the public anticipate and manage the possible human and environmental implications of nanotechnology.

About The Woodrow Wilson International Center for Scholars

The Woodrow Wilson International Center for Scholars is the living, national memorial to President Wilson established by Congress in 1968 and headquartered in Washington, D.C. The Center establishes and maintains a neutral forum for free, open and informed dialogue. It is a nonpartisan institution, supported by public and private funds and engaged in the study of national and international affairs.

America’s Overdose Crisis
America’s Overdose Crisis

America’s Overdose Crisis

Sign up for our five-email course explaining the overdose crisis in America, the state of treatment access, and ways to improve care

Sign up
Quick View

America’s Overdose Crisis

Sign up for our five-email course explaining the overdose crisis in America, the state of treatment access, and ways to improve care

Sign up
Composite image of modern city network communication concept

Learn the Basics of Broadband from Our Limited Series

Sign up for our four-week email course on Broadband Basics

Quick View

How does broadband internet reach our homes, phones, and tablets? What kind of infrastructure connects us all together? What are the major barriers to broadband access for American communities?

Pills illustration
Pills illustration

What Is Antibiotic Resistance—and How Can We Fight It?

Sign up for our four-week email series The Race Against Resistance.

Quick View

Antibiotic-resistant bacteria, also known as “superbugs,” are a major threat to modern medicine. But how does resistance work, and what can we do to slow the spread? Read personal stories, expert accounts, and more for the answers to those questions in our four-week email series: Slowing Superbugs.