Power Begins at Home: Assured Energy for U.S. Military Bases

DoD Energy Security: Challenge & Threats

- Military bases are dependent on the commercial grid
 - Power projection
 - Command, control & data centers
 - Testing, training & education
 - Hospitals & safety
 - Housing & administration
 - R&D & industrial

The electric grid is vulnerable

- Military bases experience outages today multi-day outages occur
- A growing threat
 - Natural disasters and extreme weather
 - Physical threats
 - Cyber threats

Admiral Michael S. Rogers

"...it is only a matter of when, not... if, you are going to see a nation state, a group, or actor engage in destructive behavior against critical infrastructure of the United States. On the 23rd of December ... an actor penetrated the Ukrainian power grid and brought large segments of it offline in a very wellcrafted attack. That isn't the last we are going to see of this."

Standalone Generators: Today's Approach

- Hard-wired directly to individual buildings with critical loads
- Diverse and numerous
 - Dozen of brands
 - Multiple sizes
 - 50 kW to 1,000 kW
 - Typically 100 to 200
 - Procured independently
 - Multiple sources of funding
- Solely of value during an outage

Microgrids: A Resilient Solution

- Operates either in parallel to the grid or in island mode
 - provide emergency backup power
 - a source of revenue and savings
- Today
 - Dozens of commercial microgrids
 - Federal microgids
 - FDA White Oak campus
 - MCAS Twentynine Palms
 - Miramar NAS
 - Investments for the future
 - Ft. Drum
 - Schofield

- On-site Renewable energy

Facilities

Technical Performance

Criteria	Standalone	Microgrid
Efficient Sizing	 Oversized by design (2x) As executed often worse 	 Optimal sizing Non-coincident peak power
Maintenance	 Large O&M costs Many poorly maintained 	 Less expensive to maintain Relies on a small number of standardized generation units
Reliability	 Often poor due to inadequate maintenance N+X is rare and expensive 	 Readily provides a high level of reliability (N+1 or N+2) Networked structure makes it cost effective
Flexibility	 No ability to meet changing requirements Established at purchase 	 Can respond to changes in electricity needs At no additional costs
Coverage	 Forces all or nothing solution Needs are nuanced 	 Excess generation capacity can serve Intermediate loads can be supported

Economic Modeling

kW

- A realistic but hypothetical large military installation
 - Peak demand of 50 MW
 - 20 MW is deemed critical
 - Three locations
 - California
 - Mid-Atlantic
 - Southeast
- Comprehensive measure of (net) cost
 - 20 year life cycle
 - Regional energy prices
 - Potential revenue

- peak shaving
- participation in energy markets
- Analyzed at an hourly level
 - Roiled up to a single metric \$/kW of critical load protected

DoD Energy Security: Economic Results

7

Microgrid Implementation

- DoD should procure energy security as a service
 - Microgrids are not unique to the military
 - Power markets are volatile
 - Microgrid management is complex
 - Optimal solutions require incentives that link design, construction, and operations
- Third party financing is feasible
 - Sufficient savings to support implementation through an ESPC or UESC
 - Must recognize and account for the current costs of energy security (standalone generators)
- DoD must be able to define, articulate and quantify its performance requirements

Renewables & Efficiency

- Role of Renewable energy
 - On-site renewable energy can enhance the energy security of a military installation
 - PV can extend islanding duration and scale of backup power
 - Today solar and wind power cannot serve as the primary backup power for mission critical needs
 - Storage costs are still high
- Energy efficiency and energy security are inextricably linked
 - A kW saved requires no backup
 - DoD is leaving ~ \$1B/year of energy savings on the table
 - And securing ~ 25% higher energy loads
- Meeting DoD's Efficiency Potential

- Requires metering DoD buildings
- Linking capital improvements and energy savings investments

Value of Energy Security

- Should DoD put a value on energy security?
 - It already does the full costs of standalone generators
 - Which can be lowered
 - DoD should not pay a premium
- How much energy security should DoD buy?
 - Backup power for critical military functions is required
 - Mission critical
 - Health life and safety
 - Backup power for "intermediate loads" is a business decision
 - Benefits for DoD of backup power far outweigh their costs over 20 years
 - From a business standpoint, DoD is currently underinsuring many noncritical loads on its military bases

