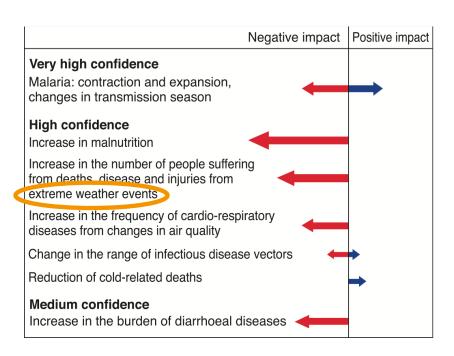
Using HIAs as a Green Building Design Tool to Enhance Resilience to Climate Change

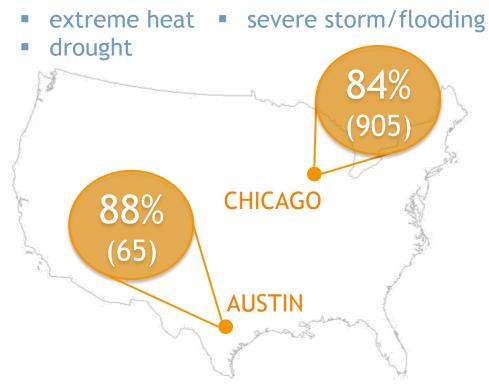
National Health Impact Assessment Meeting September 25, 2013

ADELE HOUGHTON, AIA, MPH President, Biositu, LLC



- 1. Localized Health Effects of Climate Change
- 2. Role of HIAs in Land Use & Development example from AK
- 3. Green Buildings as a Tool for Climate Change Resilience
- 4. Applying HIAs as a Green Building Design Tool to Enhance Resilience to Climate Change

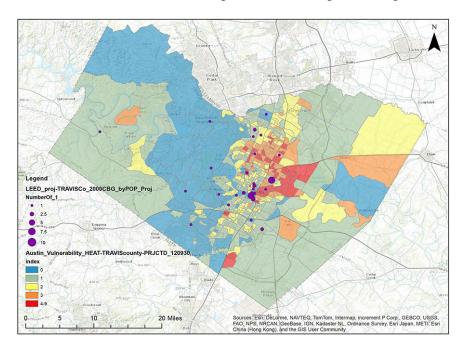
- 1. Localized Health Effects of Climate Change
- 2. Role of HIAs in Land Use & Development example from AK
- 3. Green Buildings as a Tool for Climate Change Resilience
- 4. Applying HIAs as a Green Building Design Tool to Enhance Resilience to Climate Change


Health Impacts of Climate Change

Global Perspective: Projected Negative Health Impacts of Climate Change

Source: Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007

Local Perspective (Austin, Chicago): Deaths from Climate Change-Related Natural Hazards, 1970-2010

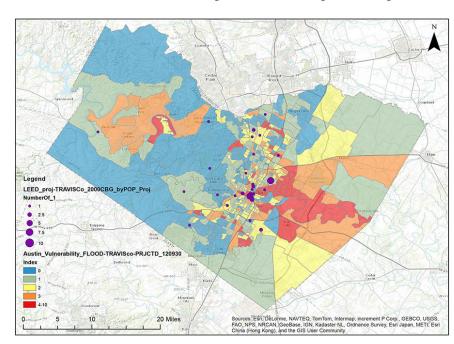

Source: Spatial Hazard Events and Losses Database for the United States, Version 9.0. Hazards & Vulnerability Research Institute, University of South Carolina.

© 2013 Biositu, LLC

Climate Change Vulnerability

Heat Vulnerability Index

Overlaid with Number of LEED Certified Projects

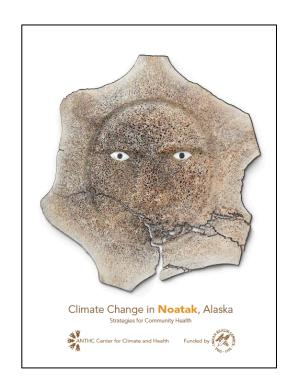


Variables

- Lack of Green Space
- Average Ambient Surface Temperature
- Population Density
- Age 65+
- Non-Hispanic African Americans

Flood Vulnerability Index

Overlaid with Number of LEED Certified Projects



Variables

- Floodplain Ratio
- Low-Water Crossing Density
- Socially Isolated (i.e. living alone)
- Renters Status
- Hispanic Population

© 2013 Biositu, LLC

- 1. Localized Health Effects of Climate Change
- 2. Role of HIAs in Land Use & Development example from AK
- 3. Green Buildings as a Tool for Climate Change Resilience
- 4. Applying HIAs as a Green Building Design Tool to Enhance Resilience to Climate Change



- 500 residents
- No road access
- Mostly Inupiat
- Economy dominated by subsistence activities

Centralized Water & Wastewater Infrastructure

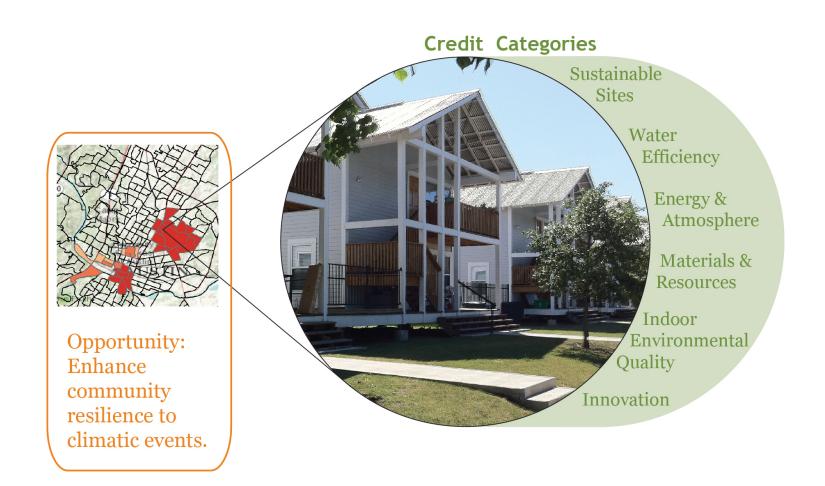
- Seasonal water shortages
- Seasonal compromised water quality
- Wastewater plant's foundation subsiding & cracking
- Risk of fuel shortages

Health Risks

- Water shortages
- Exposure to waterborne contaminants such as giardia from compromised water quality
- Risk of infections due to Interruption of services
- Compromised food security

Imagine you were designing a replacement health clinic...

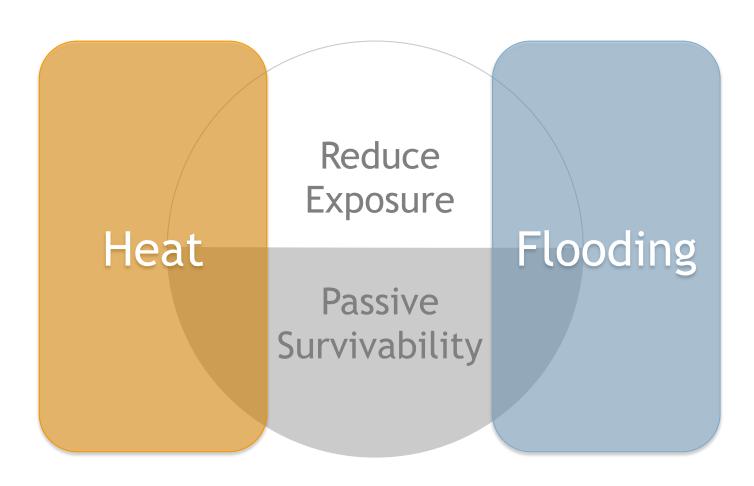
Image Credit: Noatak Health Clinic. Photo Credit: Michael Brubaker, 2010.

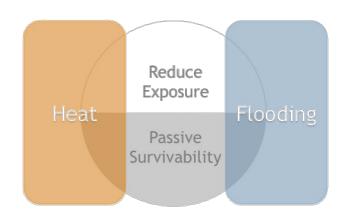

 $Source: {\it Climate\ Change\ in\ Noatak, Alaska:\ Strategies\ for}$

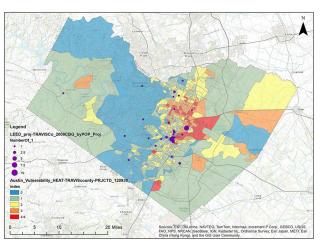
Community Health. (2011) ANTHCC Center for Climate and Health.

Map Credit: Google Maps 2011

- 1. Localized Health Effects of Climate Change
- 2. Role of HIAs in Land Use & Development example from AK
- 3. Green Buildings as a Tool for Climate Change Resilience
- 4. Applying HIAs as a Green Building Design Tool to Enhance Resilience to Climate Change

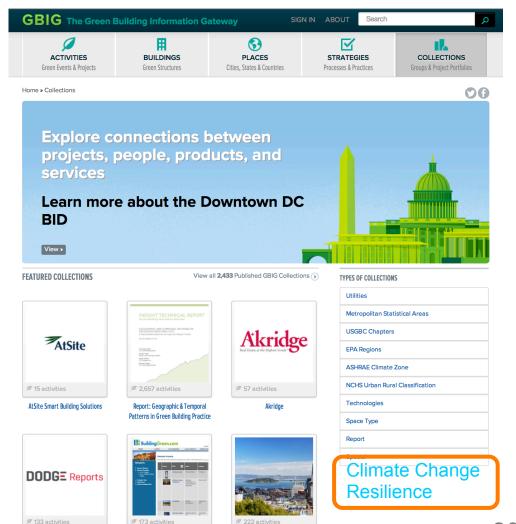

Study Definition of Green Building: Leadership in Energy & Environmental Design (LEED®)




Green Building & Climate Change Vulnerability Literature Review of LEED Strategies (Sample Results)

Determinants of Health	Public Health Resilience Outcomes	Built Environment Resilience Outcomes
Air pollution Access to opportunities to exercise Biodiversity in urban environments Dependence on automobiles Disease-carrying vectors Food / nutrition safety & security Habitat fragmentation Population density Street connectivity, Walkability	Heat- / flood-related morbidity & mortality Cardiovascular disease Interface between wildlife & humans Infectious disease (i.e., malaria, etc.) Mental health & wellbeing Respiratory disease Undernutrition & malnutrition Neighbors check on socially-isolated neighbors	Mitigate heat island effect Development in areas with existing services Cluster development to increase density Access to local, productive agricultural land Native vegetation, street trees, pervious surface Reduce ground-level ozone

Green Building & Climate Change Vulnerability Credit Groupings

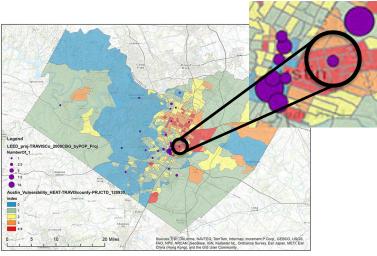


- 1. Localized Health Effects of Climate Change
- 2. Role of HIAs in Land Use & Development- example from AK
- 3. Green Buildings as a Tool for Climate Change Resilience
- 4. Applying HIAs as a Green Building Design Tool to Enhance Resilience to Climate Change

GBIG Climate & Health Resilience Collections

Coming Soon!


Policy: LEED certified in San Francisco since August 2008


McGraw-Hill Construction Dodge

Projects with BuildingGreen Case

Health Impact Assessments

Tool for Green Building Design - Austin example

LEED Credits (description)	Heat B	Heat C	Heat D
SSc1: Site Selection Avoid building on: prime farmland; land in 100-year flood plain; endangered species habitat; land within 100 feet of wetlands or 50 feet of water bodies; park land.	√		√
SSc2: Development Density and Community Connectivity Locate project in a dense urban area or close to both a residential area and at least 10 basic services (i.e., grocery stores, etc.)	✓		✓
SSc5.1: Site Development—Protect or Restore Habitat Limit disturbance of habitat on greenfield sites. Restore habitat on previously developed habitat.	✓		✓
SSc5.2: Site Development—Maximize Open Space <i>Increase vegetated open space.</i>	✓		✓
SSc6.1: Stormwater Design—Quantity Control Reduce the volume of stormwater that leaves the site after heavy precipitation events.	✓		✓
SSc6.2: Stormwater Design—Quality Control Clean stormwater of total suspended solids.	✓		✓
SSc7.1: Heat Island Effect—Nonroof Install light colored and pervious paving (i.e., roads, sidewalks, parking lots, etc) or place at least 1/2 of all parking spaces under cover.	✓		✓
SSc7.2: Heat Island Effect—Roof Install light colored or vegetated roofs.	√		✓
EAc1: Optimize Energy Performance Reduce energy use in the building.		✓	✓
EAc2: On-Site Renewable Energy On-site installation of solar, wind, or other renewable energy source.		✓	✓
EAc3: Enhanced Commissioning Perform commissioning (i.e., quality control) on all energy, domestic hot water, lighting, and renewable energy systems. Review building operations within 10 months after substantial completion of construction.		✓	✓
IEQc7.1: Thermal Comfort—Design Design air conditioning (HVAC) systems and building envelope to meet standards for temperature, humidity, and airflow.		√	√

Concluding Questions

- Why aren't HIAs applied more often at the development scale?
- What are the barriers to incorporating them into the design process?
- If they were incorporated...

How would HIAs improve design?

How would a design influenced by HIA recommendations improve population health?

Acknowledgements

- Professors Carlos Castillo-Salgado & Brian Schwartz,
 Johns Hopkins Bloomberg School of Public Health
- Professor Marie O'Neill & Carina Gronlund,
 University of Michigan
- Colleen Reid, University of California at Berkeley
- Shannon Jones, III, Austin-Travis County Department of Health & Human Services
- Dr. George Luber & Natasha Prudent,
 CDC Climate Change Program
- Dr. Christopher Pyke & Sean McMahon,
 U.S. Green Building Council
- Lipitz Policy Award,
 Johns Hopkins Bloomberg School of Public Health

Thank You.

Questions?

ADELE HOUGHTON, President

AIA; MPH; LEED AP BD+C, O+M, ND

adeleh@biositu.com 713-201-7592 www.biositu.com twitter.com/biositu

